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Preface

The purpose of this study was to determine if there existed an
analytical solution for the three-body atmospheric entry equations. [
decided to continue the excellent work by Drs. Vinh, Busemann, and Culp
and use the Method of Matched Asymptotic Expansions to determine zero
and first order solutions to the above equations. By using the computerized
symbolic manipulator Mathematica™, the algebraic manipulations are
reduced to a manageable level, so a more thorough analysis can be
performed. By examining trends in these higher ordered solutions, I hoped
a complete analytic solution, not evident from traditional analytic means,
would become evident.

I would like to thank many people whose work aided my study.
First, I would like to recognize my faculty advisor, Capt Rodney Bain.
Without his keen mathematical insight , continuing motivation, and
unfailing confidence, this study would not be possible. I am greatly
indebted to the work of my predecessor, Harry Karasopoulos. Much of the
groundwork of this study is based on Harry's master's thesis at AFIT. |
would also like to thank Drs. Vinh, Busemann, and Culp, whose work in
analytical flight mechanics greatly aided me in my study, and also Dr.
Stephen Wolfram, whose Mathematica™ code saved me many late evenings
from algebraic tedium. Finally I would like to thank my parents for their
invariable motivation and support throughout my education. Without them,

this study would not be possible.

Ted Masternak
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Abstract

Although numerical techniques exist to obtain solutions to highly non-
linear and highly coupled systems, the trends and subtleties of the solution
are frequently lost in the volume and form of tabular and graphical data in
covering a wide range of initial conditions. By deriving an approximate,
analytical solution, relationships between dependent parameters are
discernable. Also, the derived solution is easily applied to any new set of
initial conditions or can be modified to incorporate slightly different
equations of motion. This study presents an analytical investigation of the
three-dimensional equations of motion for lifting entry into a planetary
atmosphere.

In this study, the equations of motion for lifting entry into a planetary
atmosphere are derived. A non-rotating, spherical planet is assumed, as is a
non-rotating, strictly exponential atmospheric model. The derived
equations of motion are transformed to a variable set relating the classical
orbital elements to the vehicle's altitude. Solutions to the resulting five non-
linear, coupled, first order, ordinary differential equations are obtained by
using the Method of Matched Asymptotic Expansions and a computerized
symbolic manipulator, which performs the detailed algebraic computations.
By using the planetary scale height-mean equatorial radius (PSHMER)
product as a small parameter, both zero and first order expansions to the

equations of motion are obtained.

viii




It is demonstrated the analytical solution agrees with results obtained
from numerical integration of the equations of motion. Due to
approximations made in the solutions of the first order inner expansions, the
analytical solution slightly deviates from the numerical solution at low
vehicle altitudes. The two solutions are compared further and the validity

of the analytical solution is examined.

ix
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USING THE METHOCD OF MATCHED ASYMPTOTIC EXPANSIONS,
ANALYTICALLY INVESTIGATE THE THREE-DIMENSIONAL,
ATMOSPHERIC ENTRY PROBLEM

. Introduction

Since the recent explosion of readily available computing power,
numerical solutions of complex systems described by non-linear phenomena
have become ubiquitous. In using these numerical techniques, the trends
and subtleties of the original system often become lost in the results of
numerical analysis. By deriving a simple and relatively accurate analytical
solution to a complex physical system, a readily available analysis becomes
available which retains the subtieties of the original system

The equations of motion for lifting entry into a planetary atmosphere
are highly coupled and non-linear. Instead of using a numerical technique
to solve the equations of motion, an approximate analytical method can be
used, where the trends and patterns of the original system are preserved

and expressed in a solution which is simple, accurate and practical.

Scope

In this effort, the three-dimensional exact equations of motion for
lifting entry into a non-rotating planet are developed to first order

accuracy. Solutions to the equations of motion are developed by




considering the atmosphere as a boundary layer which perturbs the
vehicle's motion as is approaches the planet's surface. The Method of
Matched Asymptotic Expansions is used to develop zero and first order
solutions valid throughout the flight trajectory of the entry body. Due to
coordinate singularities, this study is limited to non-polar and non-

equatorial entry trajectories.

Assumptions

In this study, the non-rotating planet is modeled as a spherical body
possessing 8 inverse square law gravitational field. A strictly exponential,
non-rotating atmosphere is assumed with its density as a function of the
radial distance form the planet's surface. This investigation assumes the
vehicle's trajectory is influenced only by aerodynamic forces and the
planet's gravity. Other perturbing forces, such as solar/lunar gravitational
forces and other celestial perturbations, are considered negligible. The
vehicle's lift-to-drag ratio and ballistic coefficient are assumed constant and

prescribed.

Metiicdol

In Section II, the equations of motion for three-dimensional, lifting
entry for a spherical, non-rotating planet are derived from basic kinematic
and force relationships. In Section III, these equations of motion undergo
coordinate transformations to express the independent and dependent

variables as convenient, non-dimensional orbital parameters. The first




order accurate analytical solutions are derived in Section IV using the
Method of Matched Asymptotic Expansions. The five coupled, non-linear
ordinary differential equations of motion are expanded to two separate, but
overlapping domains: the outer, Keplerian, domain and the inner,
atmospheric, domain. Each of these expansions is solved independently to
create two sets of solutions to the original equations of motion. Finally the
two solution sets are blended together to generate one sofution valid over
the entire vehicle trajectory. The validity of these analytical solutions is
examined in Section V. It is shown the analytical solutions encounter
singularities near polar orbits and slightly underestimate aerodynamic
turning at low altitudes. Section VI summarizes the study's findings and

presents recommendations for further study.
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Introduction

In this section, the original equations of motion are derived for three-
dimensional lifting entry into a non-rotating planetary atmosphere. The
non-thrusting, lifting vehicle is modeled as a point mass in a three-
dimensional coordinate space. The vehicle's orbit is assumed to be initialiy
described by Keplerian or two-body motion. Aerodynamic forces are
assumed to be the only perturbations acting on the entry vehicle.

For the sake of brevity, the derivations in this section are the
abbreviated versions of much more detailed work presented in other studies
(Vinh and others, 1980:20-28) and (Karasopoulos, 1988:9-36). Thorough
descriptions of the derivations are presented in the two excellent references
listed above.

Coordinate Systems

Figure 1 defines the planetary coordinate systems used in this study.
In addition to coordinate systems referencing the vehicle to the planet,
there is also present a coordinate system centered on the vehicle and
relating its orientation to the planet befow. Listed below are the coordinate
system, their respective coordinate and unit vector representations and a
brief description of each (Vinh and others, 1980:22-24).




Figure 1. Planet Centered, Rotating Coordinate System

Reference Unit Rotation

0X,Y,Z, 1JK None  Inertial frame. Inertial reference frame
whose center is coincident with the
center of the spherical planet’s
gravitational field. The OX,Y, plane is
in the equatorial plane and the Z, axis
completes the right-handed system.

OXYZ ip jp Kp wkp  Planet frame. Non-inertial reference
frame whose center is coincident with
the center of the spherical planet's
gravitational field and fixed with
respect to the planet. The OXY plane is
in the equatorial plane and the Z axis
completes the right-handed system.
Thus, the coordinate system rotates at




the same rate as the planet, w, about the
kp axis.

Oxyz igjp kg Okp. ¢jg Body Frame. Non-inertial reference
frame whose center is located at the
vehicle. The x-axis is along the position
vector from point O to the vehicle, the
y-axis is in the equatorial plane and
orthogonal to the x-axis and the z-axis
completes the right-handed system.

Ox'yZ iyjwky Uiy ykg Wind frame. Non-inertial reference
frame whose center is located at ithe
vehicle. The x-axis is along the lift
vector (¢ = 0) from point O to the
vehicle, the y-axis is along the drag
vector (o = 0) and orthogonal to the x-
axis and the z-axis completes the right-
handed system.

Applying the coordinate transformations to the above systems resuits
in two coordinate transformation matrices. Combined, the two
transformations relate the vehicle's coordinate system in terms of the

planet’s rotating coordinate system.

cos(0) cos(¢) -sin(®) -sin(¢) cos(®) T (x
yt = | sin(6) cos(¢p) cos(8) -sin(0)sin(¢) | 1y
ZJP sin(¢) 0 cos(¢) z)B

(2.1)

cos(y) sin(y) 0
yt = | -sin(y)cos(¢) cos(y)cos(¢p) -sin()p)
ZJB -sin(yy) sin(¢p) cos(y) sin(¢p) cos(¢)

X
y (2.2)
)W

Ki ic Equati




The vehicle's position vector is given as ra riB. Differentiating this

position vector to find the inertial time derivative of the position vector uses

: - 7 Bg? _pi
the vector differentiation relationship PTRE TR R T. where

3" = ((2+ ) sind)) ig - & Jp + (o + 6) cos(e)) kg

%-:—!- - (g—:) ;B + (r cos(¢) (:_? + w)) jB + (r %?) IEB (2.3)

The vehicle's local velocity with respect to the Oxyz reference frame

uses Eq (2.2) and is given as

V- Viy- (Vsin(y))is + (Vcos(y)cos(d:))i,, + (Vcos(y)sin(d)))fca (2.4)
Equating Eqs (2.3) and (2.4) gives the kinematic equations as

:—: = V sin(y) (2.5)

do V cosy) cos(y)

dt~  rcos(¢p) ¥ (26)
%? Ly cos(a:.) sin(¢) @27)
Force Equations

Since the acceleration and the force on a vehicle are related, the

acceleration of the vehicle is calculated in deriving the force equations.
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Taking the inertial derivative of Eq (2.4), substituting in Eqs (2.6) and (2.7)
and solving for the derivatives dV/dt, dy/dt and d{:/dt gives

%- -Eg;- g sin(y)
cfr cos(4) (sin(y) cos() - cos(y) sin(¢) sin(tb)) (2.8)
N %% - Eu%s(ol - g cos(y) + !} cos(y) + 2wVcos(d) cos(¢)
+ wr cos(4) (cos('y) cos(¢) + sin(yy) sin(¢) sin(tb)) (2.9)
dg Fysinlo) v2 ’

dt " mcosy) T cos(y) cos(¢) tan(¢) -%(ry)sin(w cos(¢) sin(¢)

+ 2wV (tan(y) cos(4) sin(p) - sin(¢)) (2.10)

Fy is defined as the lift force, Fy is defined as the aerodynamic and

propulsive forces along the velocity vector and ¢ is called the bank angle,
which rotates the Fy vector out of the local vertical plane.

Assumptions

The above three equations are known as the force equations. Since
this study assumes a non-thrusting, lifting vehicle, the vehicle's thrust is
zeroor T = 0 and by the definitions of Fyand Fy , Fy = -D and Fy = L.

Since this study assumes the planet and its atmosphere are not
rotating, w= 0. This assumption is commonly used in entry flight

mechanics, where the analysis is primarily concerned with the variations in
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the velocity and altitude of the entry vehicle in the portion of the trajectory

where high deceleration develops (Vinh and others, 1980:27). In his study,

Karasopoulos showed exclusion of a rotating planet/atmosphere results in

an analysis not valid for some entry trajectories, especially where the

vehicle undergoes a long atmospheric entry period, as in very shallow entry

trajectories. This study assumes the non-rotating equations of motion are

valid and applies them to trajectories where they are accurate.

Substituting these assumptions in the above equations result in the

modified kinematic and force equations.
dr .
a-V sin('y)

dd V cos(y) cos(¢)
dt = rcos(¢)

dé V cos(y) sin(¢)
dt ~ r
dv D .
" m-8 sin(y)
dy L cos(o) v?
\' _d% = m 8 cos(y) + —r"cos(y)

. 2
' %‘f- - % - vTcos(y) cos(¢) tan(¢)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)




This section briefly derives the equations of motion (the equations for
flight over a non-rotating spherical planet) for a vehicle considered as a
point mass traveling within a planetary atmosphere. The derived equations
are repeated below for completeness.

dr .
el sin(y) (2.11)

do V cos(y) cos(¢)

dt™  rcos(¢) 212)
%? Ly cos(}:.) sin(¢) (2.13)
% -- % - g sin(y) (2.14)
Vﬂ-LcoTw-gcos(y%!::cos(y) (2.15)

2
v, ;22‘5‘(‘3) ¥ costy) cos(y) tan(e) (2.16)

10




1. Transformation of the Equations of Motion

Introduction

The equations of motion for three-dimensional, lifting entry into a
non-rotating planetary atmosphere were derived in Section II. In this
section, assumptions and approximations are defined. Coordinate
transformations are undertaken to convert the equations of motion into a set
of coupled ordinary differential equations with convenient dependent and
independent variables The equations of motion derived in Section 1l are

given as

%- V sin(y) 3.1)

do V cosly) cos(¢)

dt~  rcos(¢) (32)
%? Yy cos(g:.) sin(¢) (3.3)
% -- %- g sin(y) (34)
yox Leostod ooy Koty (35)

vy L sin(g) V2

dt ~mcos(y) ~ r cos(y) cos(p) tan(¢) (3.6)

11
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Assumptions

Spherical Planet/Atmosphere. Although planets are usually oblate
ellipsoids, the spherical planet assumption is common in entry flight
mechanics analysis, since the ellipticity of the planets are of the order 1072
to 1074 (Vinh and others, 1980:3). Thus, the error induced by this
approximation is insignificant.

Following the spherical planet assumption, the planetary atmosphere
is assumed to be a sphere. In reality, an atmosphere is approximately an
oblate ellipsoid with minor deviations due to solar storms and uneven
heating of the planetary atmosphere. Generally, these effects are present at
altitudes above 250 kilometers, where aerodynamic forces are insignificant

except in the slow orbital decay of satellites (Vinh and others, 1980:2).

Gravitational Model. Since the planet is being modeled as a sphere,

its gravitational field follows Newton's inverse square law and is given as

|
glh) - g, (r—(;; 3.7)

Atmospheric Density Model The planet's atmosphere is assumed to
be a non-rotating sphere fixed with respect to the planet. From the state
equation for a gas and the hydrostatic equation, the planetary atmosphere is
modeled by the equation

Qpe - -fdr (3.8)

12




where B is the local atmospheric density and r is the radial distance from
the center of the planet. The 1/ term is called the scale height and
describes the size of an altitude region where the atmosphere is accurately
modeled by an exponential relation.

As in many other analytical entry flight mechanics studies, it is
assumed the quantity Pr is a constant for a planetary atmosphere (Vinh and
others, 1980:5). For most planets, this value is usually of order 1000. For
earth, it has an average value of about 900. Thus, solving Eq (3.8) with this

assumption yields

-B
P= o (;r_) ) (39)

This study assumes the planetary atmosphere is accurately modeled

by a exponential atmospheric model given as

By
p=pge (3.10)

where y is the altitude above the planet surface. By definition, h = y/r,
Thus By =B hr, = h/eor

-h/e
p=pge (3.11)

where

G'B_r,- (3.12)

The value of ¢ is on the order of 1/1000 and thus is a small number. Using

this variable as a small parameter allows the use of Matched Asymptotic

13




Expansions to be applied to derive an analytical solution to the equations of
motion.

Aerodynamic Forces The lift and drag parameters for the entry
vehicle are given by the following relationships, which incorporate the

exponential atmospheric density relation determined above.

2 e'h/( vZS

L-¢ B2 B (3.13)
2 e-h/e vZS

D-Cn#-cog’——z— (3.14)

Although C; and C, are functions of the angle of attack, Mach number
and other flight parameters, this study assumes they are constant and
prescribed at the beginning of the entry trajectory. This is a common

assumption when dealing with hypersonic flight mechanics (Vinh and
others, 1980:101).

Substitution of these assumptions into the equations of motion given
by Eqs (3.1)-(3.6) gives

:—:-- V sin(y) (3.15)

do V cos(y) cos(¢)

%?_ v cos():.) sin(¢) (3.17)
Cp e M vis 2

%‘tl -- -D—e‘ez—m——— - 8, (Irl] sin(y) (3.18)
14




-h/e 2 2
dv C;pe "¢ VS coslo) r\2 vV
V_E)t[' L*s m - 8, (-r’) cos(y)+';'cos(y) (3.19)

Cpose ™™ v3ssin(o) V2
\' %‘f- -k p‘eZm cos(y;m(o - ":_—cos(y) cos(¢) tan(¢) (3.20)

Transf ion of the Ind lent Variabl

As given in Eqgs (3.1)-(3.5), the equations of motion are in terms of the
dimensional variable time, t. For atmospheric entry, it is more convenient
to relate the motion of the vehicle in terms of the orbital altitude, r, since
the two major forces controlling the entry trajectory, gravity and lift/drag,
are functions of r. To change the integration variable from t to r, the chain
rule for differentiation is used. Thus, using dr/dt relationship from Eq (3.1),

differentiation with respect to r is defined as

d ddt 1 d
dr " dtdr "~ V sin(y) dt (3.21)

This transformation reduces the number of equations of motion from six to
five since Eq (3.1) is incorporated into the other five equations by the above
use of the chain rule.

In atmospheric entry analysis, a dimensionless altitude, h, is
commonly used as the independent variable of integration for the equations
of motion. ‘h’ is defined as (Vinh and others, 1980:256)

=¥ (3.22)
rS

15




Since r is currently the integration variable for the equations of
motion, a transformation relationship is needed to convert r to h. By

definition
r=rg+y=rg(l+h) (3.23)

Differentiation the above equation gives
dr
dh " s
Again using the chain rule for differentiation yields
d ddr d
dh " drdh s dr (3.24)

Applying the above definition for r as well as the differentiation

transformation for d/dr yields

4 d 5 d .
dh " s dr” Vsin(y) dt (3.25)

Applying this transformation, and the definition of r, to Eqs (3.15)-

(3.20) gives the modified equations of motion as

de cos(¢)

dh ™ (1 + h) tan(y) cos(¢) (3.26)
do sin(¢)

dh = (1 + h) tan(y) (3.27)

-h/e
dv CD fg Pg€ VS 8, I
dh© " 2msin(y) "y ‘:,_)5 (3.28)
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dy &ripse'h/ ¢ S cos(o) ) A . i (3.29)
dh 2m sin(y) (1 +h)® V¥ tan(y} (1+h)tan(y) >

dy Cprg pse""e Ssin(o) cos(¢) tan(d) (3.30)
dh = 2m sin(y) cos(y) ~ (1 +h) tan(y) '

Thus, the above modified equations of motion are expressed in a
convenient integration parameter, h. In the next section, the dependent
variables are transformed into a set of orbital parameters which are

convenient to use in the analytical analysis performed in Section IV.

Transf . Orbital EI .

Ballistic Coefficient and Other Flight Parameters. In Eqs (3.26)-
(3.30), there are several lengthy constant coefficients which pertain to the
flight vehicle and the planetary atmosphere it is entering. By developing
non-dimensional shorthand expressions for some of these terms, the
equations become easier to manipulate. The first non-dimensional term
defined is called the ballistic coefficient, B, and specifies physical
characteristics of the flight vehicle, as well as the planetary atmosphere it is
entering. B is assumed constant throughout the entry trajectory, specified
by initial conditions and defined as (Vinh and others, 1980:256)

_ psSCp _ Pyl SCpe
B 2mp 2m (3.31)
To help further facilitate the manipulation of the equations of motion

the terms specifying the bank angle, o, and the lift-to-drag ratio, C, /C,,, are

17




combined. & and A are assumed constant throughout the entry trajectory,
specified by initial conditions and defined as (Vinh and others, 1980:255)

C
A= E"cos(o) (3.32)
D
C, .
= C sin(o) (3.33)
D

Substituting the above three relations into Eqs (3.26)-(3.30) gives

dé cos(¢)

dh ~ (1 + h) tan(y) cos(¢) (3.34)
d¢ sin(¢)

dh = (1 + h) tan(y) (3.35)

_dl Bve-h/é gl &

dh = " esiny) " y(1 « h)? (3.36)
Y M 'L S— (337)
dh " esin(y) " (1 + h)2 V¢ tan(y) (1+h)tan(y) '
dy Bo e/ _cos(¢) tan(¢) (3.38)
dh " esin(y) cos(y) ~ (1 + h) tan(y) ‘

Modified Speed Ratio, Recent analytical flight mechanics studies
have determined that transforming the velocity terms, V and dV/dh, into
the modified Chapman variable, u, places the equations of motion into a
more practical form. By definition, u is defined as (Vinh and others,
1980:229)
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" - e cosz('y) ) V(1 + h) COSZ(_Y)
8r A

(3.39)

Solving for V yields

1 Ug,ry
“cos(y) V(I+h)

N (3.40)

As a convenience u is also known as the speed ratio since it relates
the vehicle's local horizontal velocity to the circular orbital velocity at the

vehicle's current altitude (Karasopoulos, 1988:45). To replace V with u in
Eqs (3.34)-(3.38), Eq (3.39) is differentiated with respect to h, keeping g,

and r, constant.

du VZcosi(y) 2V(1 +h) cosi(y) dV
du . dav
dh 84T Byls dh

) 2VZ(1 + h) sin(y) cos(y) dy
8yl dh

(3.41)

Substituting Eqs (3.36) and (3.37) into the above equation transforms
the dV/dh equation of motion into du/dh form and replaces Eq (3.36)

du u 280(1+Man(y)) h/e
dh " T (1+h) ° e sin(y)

(3.42)

Modified Flight Path Angle In Eq (3.37), sin(y) terms appear in the

denominator. Most realistic entry trajectories begin with -10° s y < 0° and
often result in aerodynamic skipping, where vy switches from a negative to
positive quantity. During this transition from positive to negative values, 'y

~ 0°, which could create a singularity in Eq (3.37) since 1/sin('y), where y =
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0°, is not defined. To eliminate this potential singularity as well as to
simplify the equations of motion, the flight path angle, 'y, is transformed to
the variable q, given as (Vinh and others, 1980:257)

q = cos(y) (3.43)

Differentiating the above relation with respect to h yields

d . d :
3?1 - - sin(y) g% (3.44)

Using the above equation and the definition for the speed ratio

transforms Eq (3.37) into a differential equation for q.

dg J_(,-gf)_@ﬂ

dh™ 1+h u € (3.45)
Thus, the equations of motion are now given as

du _u_ 2Bu(intan(y)

ah ™ (o) esinty)  © (3.46)

2 -h/e

d9 _q (, gq°) BAe

dn“1+n(“u]‘ ” (3.47)

dé cos(¢y)

dh ~ (1 + h) tan(y) cos(¢) (3.48)

do sin(¢)

dh ~ (1 + h) tan(y) (3.49)

dy _ BoeMe _cos(d) tan($) (350)

dh " e sin(y) cos(y) ~ (1 + h) tan(y) :
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where q = cos(y).

Classical Orbital Elements Before using the Method of Matched
Asymptotic Expansions to analytically solve the above equations, they are
transformed again to express them in a form which will simplify the
analysis found in the next section. Currently, the independent variables are
the speed ratio (u), modified flight path angle (q), longitude (6), latitude ($)
and heading angle (§). During the orbital lifetime of a satellite, these
variables are constantly changing. By transforming the variable set (6, ¢
and ¢ ) to the set of classical orbital elements (I, Q and «), the resulting
analysis is greatly simplified. This simplification results from the classical
orbital elements being constant for two-body motion, where there are no
perturbing forces (Wiesel, 1989:34-35, 58). As shown in the next section,
the equations of motion will be analyzed in two domains, exo-atmospheric
and atmospheric flight. This transformation will greatly simplify the exo-
atmospheric (two-body) analysis, since two of the equations of motion are

constant.

Inclination Angle. I To derive the equation of motion
describing the inclination angle, the spherical trigonometric relationship

(A.7) is used and given below.

cos(l) = cos(¢) cos(¢) (3.51)

Differentiating the above equation with respect to h and solving for
dl/dh gives

dl _sin(¢) cosly) dg = cos(¢) sin(¢) dd (352)
dh®  sin(I) dh sin(I)  dh '
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Substituting in Eqs (3.49) and (3.50) for the differential relations
d¢/dh and d¢/dh and using the spherical trigonometric equations (A.5) and
(A.11) gives

1]__ B & COS(G) -h/e
dh ¢ sin(y)cos(y) €

(3.53)

Longitude of the Ascending Node, Q. To derive the equation of
motion describing the longitude of the ascending node, the spherical

trigonometric relationship (A.15) is used and given below.

sin(¢) = sin(I) cos(6 - Q) (3.54)

Differentiating the above equation with respect to h and solving for
dQ¥/dh gives

dQ cos(¢p)  dp cos(6-Q)cos(l) dl d¢d (3.55)
dh " sin(6 - Q) sin(I) dh ~ sin(6 - Q) sin(I) dh * dh -

Substituting in Eqs (3.49), (3.50) and (3.53) for the differential
relations d¢/dh, d¢/dh and dI/dh and using the spherical trigonometric
equations (A.4), (A.10) and (A.11) gives

aq B 6 sin(a) /e
dh " € sin(I) sin(y) cos(y) €

(3.56)

Argument of Latitude at Epoch, g To derive the equation of
motion describing the argument of latitude at epoch, the spherical

trigonometric relationship (A.4) is used and given below.

sin(a) = %:((?)l (3.57)
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Differentiating the above equation with respect to h and solving for
da/dh gives

da _ cos(¢) d¢ sin(a) cos(l) d (358)
dh " cos(a) sin(I) dh ~ cos(a) sin(I) dh :

Substituting in Eqs (3.49) and (3.53) for the differential relations
d¢/dh and dl/dh and using the spherical trigonometric equation (A.11)

gives

da 1 ) B 6 sin(a) -h/e
dh " (1+h) tan(y) ~ < tan(]) sin(y) cos(y) €

(3.59)

Summary

The above derivations develop the three-dimensional equations of
motion for atmospheric entry. They relate the classical orbital elements to

the non-dimensional altitude.

du " ZBu(M\tan(y)) /e

dh” T (+n) "~ esin(y) ¢ (3.60)
:;:_“J;h_)(ﬂf-l)-l"ei’f (3.61)
dQ B 6 sin(a) -h/e (3.63)

dh " ¢ sin(1) sin(y) cos(y) ©
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da 1 B 6 sin(a) b/
dh ~ (1+h) tan(y) € tan(l) sin(y) cos(y) © (3.64)
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IV. Solutjons to the Equations of Motion Using Matched

In Section IlI, the five equations of motion for three-dimensional

atmospheric entry were derived and are repeated below.

du _u_ 2Bu(lAtan(y)
dh~ " (1+h) = esin(y)
dq__q (¢ ) Baeh
dh'(l+h)(u ) )' €

dl B 6 cos(a) -h/e

dh ~ e sin(y)cos(y)

dQ B & sin(a) “h/e

—_— - - e

dh ¢ sin(]) sin(y) cos(y)

da 1 B & sin(a)

dh ~ (1+h) tan(y) " ¢ tan(]) sin(y) cos(y) ¢

The above five differential equations are first order, non-linear

Asymptotic Expansions

-h/e

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

ordinary differential equations (ODEs). Although there exist techniques to

solve any first order, linear ODE, the nod-linearity and coupling among the

five equations prevents them from being solved by traditional analytical

means (Rainville and Bedient, 1981:36). To preclude a numerical solution

to the above ODES, and thus retaining some insight into the mechanics of

the problem, a higher order analytical solution is used (Vinh and others,
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1980:254). The solution method implemented is called the Method of
Matched Asymptotic Expansions.

The Method of Matched A i E :

The problem of atmospheric entry is fundamentally a situation where
an initially small perturbation, the atmosphere, is introduced into the
equations of motion, but its exponentially increasing effect causes the
orbital elements to undergo very rapid changes over a very narrow region
of the independent variable, the vehicles's aititude (Nayfeh, 1981:270-279).
Thus, the atmospheric entry equations are modeled as if the atmosphere
acts as a boundary layer adjacent to the orbital region solely specified by
Keplerian, two-body, motion, neglecting other perturbing forces (Vinh and
others, 1980:259). From the perspective of the entry vehicle, its orbit is
initially prescribed by gravitational forces, but as its altitude decreases, it
enters a boundary layer region formed by the atmosphere. The
aerodynamic forces of lift and drag will vary drastically over a small range
of altitude, as compared to the mean orbit altitude, and thus dramatically
alter the orbital parameters.

The Method of Matched Asymptotic Expansions is chosen over other
analytical techniques such as the methods of muitiple scales and straight-
forward expansions since the Method of Matched Asymptotic Expansions is
more adept at handling non-linear differential equations (Nayfeh,
1981:279). In this method, the solution to the problem is represented by
two expansions, each of which is valid in part of the problem domain, either

exo-atmospheric or atmospheric altitude. Since the two expansions have
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some overlap, they are matched to create one composite expansion valid

over the entire problem domain.

Deriving the O { loner E ions Using Matl o

The process of deriving the outer and inner expansions using
Matched Asymptotic Expansions is a very laborious and tedious exercise in
algebraic bookkeeping. To expedite these derivations, a computerized,
symbolic manipulator, Mathematica™, is used to perform the outer and inner
expansions. Using Mathematica™ decreases the time performing algebraic
manipulations. Thus, more time is spent in analysis of the derived solutions.
The computer code .-« J in this study is presented in Appendix B, as is the
methodology usec 0 develop the code.

In the following expansions, two of the ten expansions are performed
to illust: ate the techniques involved. The remaining expansions are

presented without derivation and are as given from Mathematica™ output.
Quter Expansions

The solutions developed for the exo-atmospheric (non-boundary
layer) portion of the domain are called the outer solutions. These solutions
are developed from asymptotic expansions of the equations of motion using
the small parameter, . The outer solution variables are denoted by the

superscript “0" and are assumed as follows (Vinh and others, 1980:259):

U0 = ug(h) + uy(hle + up(h)e + O()
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q® = qg(h) + q,(h)e + Gy(h)e? + O(c®)

19 - I(h) + I, (h)e + L(h)é? + O(e?)

00 = Qg(h) + @ (h)e + Q(h)é? + o)

o® = ag(h) + a;(h)e + ap(h)e? + O()

¥° = yolh) + y,(h)e + yp(h)e + O(e}) (4.6)

The approximate solutions for lifting atmospheric entry are of order
el (Karasopoulos, 1988:82). The solutions derived to el and higher orders of
€ act as correcting factors to the zero order solutions and account for
decreasingly significant physical characteristics of the problem. This is
evident in Eq (4.6), since the solution order (u,, u,...., for example) is
multiplied by corresponding powers of €. Thus, the zero order solution
gives the primary behavior of the variable and higher order solutions add

corrections which progressively bring this approximate solution in line with
the actual solution.

du/dh Outer Expansion. This expansion is performed to illustrate the

techniques used in deriving an expansion. The original ODE is given in Eq
(4.1) as

du u ZBu(M\ tan(y))

- - -h/
dh =~ (1+h) csinly)

Next, straightforward expansions for the variables in the above ODE
are defined. The expansions for u and 'y are assumed in Eq (4.6) while

templates for tan(ty) and 1/sin(vy) are derived in Appendix C and given as
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Eqs (C.11) and (C.13). Substituting the expansion for v in the two templates
gives

[sin(yo v y€+ yoet + 0(63))]-1

1 yjcosly,) Y]z(l + COSZ(Yo)) ) cos(yo) . 0l
sin(y,) sinz(yo) ‘ Zsin3('y0) smz(yo) c
3 Y
tan(y, + y,e+ yzez + O(€”)) = tan(y,) + m €

2.
Yi Slﬂ('Yo) Y2 3
[ cos3(y0) cos? (yo)] ¢ o)

Substituting the above expansions in the original ODE gives

3
d -h/
u0+du|€+du2€2__uo+ule+ 2e + 0(e”) _2Be V¢
dh dh " dh (1+h) €

(“o suEs upel 0(63))[l+?\ tan('yo sy €+ o€t + 0(63))]

€ sin(yo +y €4 y262 + 0(63))

X + 0(63)

2 3
Ug + Uje+ Uye + O(e”)
-2 1 (l*h) ‘2B(U0“‘U|€* 0262*0(63))

' ’ Y ¥, sm(ypl Y2 ]
X _1 A[tan(yo) cosz(yo)e ( cos ('yo) cos (yo)) e2]

1 yjcosly,) \ Y|2(1*°°SZ(Y0)) _zcos(ygl J
sin(yg) ~ sin?(y,) ¢ 2sin’(y,) sin (yo)

29




e-h/e

+
€

o)

X

At this point, all the terms on the right hand side are products of
terms which are sums of constant coefficients and powers of €. Thus,
multiplying out the above equation and equating terms of identical powers

of ¢, will give the desired expansions (ODEs) of order €. Since exp(-1/¢) is
~h/e
e

€

smaller than any power of € as €-0, ~ 0 (Nayfeh, 1981:260). This

greatly simplifies the expansion above and is frequently used in this study.

Thus, the above expansion is multiplied out and the order ¢ terms are as

follows
e terms: %E‘ﬁo_ -- h—lioh—) (4.7)
¢! terms: dd—:l -- H“:hL) (4.8)
¢ terms: %12 - - (1%2"_) (4.9)

da/dh Outer Expansion. As derived by using Mathematica™, the
dqg/dh expansions are grouped by € order as follows:

2
dg, 9o (9

0, 9% 9 (%"
e terms: 4" =T, p U 1 (4.10)
! iorms 990, S0 (20001 da) @y (G i
€ terms. dh b l . h \ uo - uo + l . h uo - l)
2,49 (3a ) 3a0q)® 3afqu y(u? up
€ terms: ~4 %= qp -1+ - +Qqq - ~2/(4.12)

h Ug Ug ug uy’ U
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di/dh Outer Expansion. As derived by using Mathematica™, the

dI/dh expansions are grouped by ¢ order as follows:

0 diy

e terms: g -0 (4.13)

dl
1 L
€ terms: ah 0 (4.14)

dI
2 L2
¢ terms: =0 (4.15)
dQ3/dh Outer Expansion. As derived by using Mathematica™, the

dQ2/dh expansions are grouped by ¢ order as follows:

0 a6

e terms: "= 0 (4.16)

dQ
| il
€ terms: dh 0

2 a2,

¢ terms: ~ -0 (4.18)

(4.17)

da/dh Outer Expansion. As derived by using Mathematica™, the

da/dh expansions are grouped by ¢ order as follows:

0, . 9% !
€ terms: dh - (l . h) tan(yO) (4‘9)

¢ terms: L. . .
" dh T (14 ) sin(yg)

da ¥t cos{y,) Y
. —2 —|——3-9—-. - J—{

) sin (‘Yo)

(4.20)
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outer E ion Soluti

gf_Igr_ms, The complete set of el term outer expansion differential

equations are derived above and are repeated below.

duy y
dh  (1+h)

dog |
dh " (1 + h) tan(y,)

(4.7)

(4.10)

(4.13)

(4.16)

(4.19)

Solutions to this set of differential equations are derived in Appendix

D and are given below.

TR
0= T+h
. Cos\C
0" 1 [CorCanll + ) - 1
Ip = Cos
Q9 = Coq
, T
o = Sin! b l.¢
- 03
Ql‘conzco
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(4.23)

(4.24)

(4.25)
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g{_]‘_e_[ms. The complete set of e term outer expansion differential

equations are derived above and are repeated beiow.

dy, W
dh ~ " (1+h)

do; 99 zqoﬂl_qozul q
dh TTen| up |y

dl
J-
an "0
a
dh

da, . Yi
dh " (1 « h) sin?(y,)

*1+h

(4.8)

(4.11)

(4.14)

(4.17)

(4.20)

Solutions to this set of differential equations are derived in Appendix

D and are given below.

T
1" T+h
C

+C \Jl'fh

[;ko,(uh) 2 ]

qy = 3

(2 - Co Cogl1 + 0))?
I;=Cy3

Q=Cyy
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(4.28)
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C
(Clz + Clncozﬁ)(l*h) - [\TLC_L* COICIZ!

01
al d —
(1 - Coy2Cop JN-Coy * 2(1+h) - Cy,Cop 150

*Cls (431)

gf_‘[_e_x:ms. The complete set of ¢ term outer expansion differential

equations are derived above and are repeated below.

L

dh =~ (1+h) (4.9)

(4.12)

ah (4.15)

T (4.18)

da; ylzcos(yo) ) Y
dh (1 +h)sin¥Xy,) (1 +h)sin(yg)

(4.21)

Inner Expansions

The solutions developed for the atmospheric (boundary layer) portion
of the domain are called the inner solutions. These solutions are developed
from asymptotic expansions of the equations of motion using the smail
parameter, . The inner solution variables are denoted by the superscript.

"I and are assumed as follows (Vinh and others, 1980:260):

u' = ug(8) + u (Ee + u(E)e? + o(e})
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q' - qol8) + q,(Be + qp(B)E2 + OeY)

I = 14(8) + 1,(8)e + 1,(E)e? + Oed)

Qi = Qg(8) + Q(B)e + Q(8)E2 + O(})

al = () + a, (e + az(E)ez + O(e)

¥l = vo(8) + v, (8)e + y5(8)e? + O(}) (4.32)

To derive the inner expansions, a new independent variable is
required to force the equations of motion to focus on the boundary layer
(Nayfeh, 1981:262). The magnified variable, £, becomes the new
independent variable for the five coupled equations of motion. Thus the
equations of motion undergo a stretching transformation which focuses
them on the behavior found in the boundary layer. £, the magnified non-

dimensional altitude, is defined as

E= 2‘ or h=¢&
Using the chain rule for differentiation gives an expression for -a%

E-dEdh"Cdah T dn-cdE (4.33)

Substituting the above transformations for both h and dh into the
original ODEs (Eqs (4.1) - (4.5)) gives the ODEs as functions of the
stretched variable, &

du ) ZBU(I + A ;an(-y)) )
€ " T(1+ed)” sin(y) et (4.34)
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q 2
%‘% ) (l€+e£) (% 1) -Bhe™ (4.35)
dI Bécos(a)
d€ " sin(y)cos(y) (4.36)
daQ B & sin(a) )
d€ " sin(I) sin(y) cos(y) © (4.37)
da € B 6 sin(a) )
d€ " (1 +e&) tan(y) " tan(D sin(y) cos(y) © (4.38)

du/d¢ Inner Expansion. This expansion is performed to illustrate the
techniques used in deriving an expansion. The original ODE is given in Eq
(4.34) as

du ew  2Bu(l+Atanty))
dé = T(1+€f)” sin(y) €

Next, straightforward expansions for the variables in the above ODE
are defined. The expansions for u and vy are assumed in Eq (4.32) while
templates for tan(y), 1/sin(y) and 1/(1 + €&) are derived in Appendix C and
given as Eqs (C.13), (C.11) and (C.16), respectively. Substituting the
expansion for vy in the two trigonometric templates gives

[sin(yo + Y€+ yzez « o) )]'l

2(1+ cos
1 ypooslyg) |¥i (1 * co (Yo)) _yoosltygll 5 3
sin(y,) sinﬁyo) ) [ Zsing(yo) sin“(y,) ¢+ 0le)
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2 3 Yy
tan + Y€+ Yqae” + O(e7) ) = tan(y,) + €
( Yot Yi€E*t Y2 ) Yo cosz(yo)

2.
+ Yi SJL(YQ* —z—y 2+ 3
[ cos}(yg)  costly,) ¢ ole)

Substituting in the expression (1 + €£) into the algebraic template gives

!
e ! -terg 2 o)

Substituting the above expansions in the original ODE gives

2 3
du, du du Uy + U €+ Uge” + Ofe”)
0 1 . S22 0" 1t72 . -¥
d€+d§e+die € T+ et 2Be

(“o +ugE+ Upel + O(ea))[l'f?\ tan(yo sy €+ yo€l + 0(83))]
sin(yo vy €+ Y€+ 0(63))

X

--e(uo+u|e+ 02€z+0(€3)) (l '56*52€2+()(€3))-259'§

X (“o +UpE+ Upel + 0(63))

[ Y ysinlyg) 'y
X | 1+A [tan(yo) + m €+ [—'—3—0' + —21—5] ez]]

cos (yy) cos“(y,

r

2 2
1 yeosly) [ (10c0yy) ¥z008(yg) 2] 3
stin(yo)' sin®(y,) e+[ Zsin3(yo) ) Siﬂz(Yo) | o)
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At this point, all the terms on the right hand side are products of
terms which are sums of constant coefficients and powers of . Thus,
multiplying out the above equation and equating terms of identical powers

of €, will give the desired expansions (ODEs) of order ¢.

du 2Bu0e'5(l + Man(yo))
0 Cdyy
€ terms: T sinCyg) (4.39)

u, (1 + Atan(y,))
Siﬂ(‘Yo)

du
1 ihabad | -
€ terms: gt ~Vo- 2Be™* [

ugY;cos(yg)( 1 + Atan(y,)) Ao ¥y ] (4.40)

sinz(yo) ! cosz(yo) sin(y,)

2.
du ¢ |_hu sin(yg)
¢ terms: &z"“n*"oE-ZBe“’[——L(——yz— Y| 'YQ]

sin(yg) cosz(yof cos3(y0)

y,z(l + iosz(yo)) chos(ygl]

+ uo(l + Man(Yo))[ Zsina('yo) Siﬂz(Yo)

AN

Auyy, “|'Y|COS(Y0)(1 + Man(yo))
cos?(y) sin(y) sin(y)

Nugy,? uy(1 + Man(yo))] (441)

" sin®(y,) cos(y,) T sinlyy)

da/d¢ Inner Expansion. As derived by using Mathematica™, the
dq/dh expansions are grouped by ¢ order as follows:
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d
¢ terms: qu' --ABe* (4.42)
!y 991 %’
€ terms: T =qq(-1+ ™ (4.43)
2, 49, g %’ ) 2099,
€ terms: ~;t =3 (1-uj-Eug) + qglE-1) + q,| - 1]+ (4.44)
£y, Uo Uo

di/d¢ Inner Expansion. As derived by using Mathematica™, the dI/dh
expansions are grouped by € order as follows:

dl, Boe* coslag)
0 . =0
€ terms: e = Sinlyg) cos(y,)

(4.45)

dI - | |
| et § 4
terms: = Bbe s(ag -
¢ d& [y,co ( )(cosz(yo) sin®(y,)

asin(o) )] (4.46)

" sin(yg) cos(yg

di - 1 1
2 s PP . - -
¢" terms: g Bbe [(yzcos(qo) y,a,sm(ao)) (co sz(yo) sin )

Zly,)
2
. v, “cos(ay) S
sin(yq) cos(yy,) (co?(yo) sin“(yo) )

2
@— + y,z]cos(ao) + 0y sin(ao)}

sin(yq) cos(y,) (4.47)
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dQ/d¢ Inner Expansion. As derived by using Mathematica™, the
dQ)/dh expansions are grouped by ¢ order as follows:

0 dQ _ Bbée ’sin(ap)

€ terms: d€ " sin(Iy) sin(yg) cos(y,) (4.48)
dQ _s | vysin(cg) 1 1
1 84 et [ YSIMC) -
¢ terms: g - Boe [ sin(lp) (cosz(yo) sinz(yo))
Il sin(ay) cos(ly) acos(ag) (4.49)
" sin?(1y) sin(y,) cos(yo) " sin(l) sin(yo) cos(y)| "
2 _ Qz_ ¢ 1 1 [ylaLcos(ao)
¢ terms: “gg = Be [(cosz(yo) sinz(yo)) sin(ly)
) i . Y, _ y3jsin(og) cos(ly)
sin(y,) cos(y,) sin(ag) sin(ly) ~ sin(ay) sin(l,) sin(I,)
i I,z(l + cosz(lo)) _
* sin(yg) cos(yy) sin(ay) sin(Iy) 2$in2(lo) + agsin(ag) cos(ap)
2
(o)
_9‘1.%0__ le(‘ . sinz(ao))
cos(ly)
2:)"([ ))(12* Gl |Sln(ao) COS(GO))]} (450)

da/d€ Inner Expansion. As derived by using Mathematica™, the
da/dh expansions are grouped by ¢ order as follows:
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d Bée ™ sin(og)
0 - N L
¢ [erMS: “g& =~ tan(ly) sinlyg) cos(yo)

(4.51)

da 1 51y SIn(ao) 1 1
i ' 1 ) AL -
¢ terms: = fan(yg) Bbe [tan(lo) (cosz(yo) sinz(yo))

) 1, sin(og) \ a;cos(ag)
sin(I,) sin(y,) cos(y,) tan(ly) sin(yo) cos(y,)

s

2 R S { U A I 1 [y.a,cos(ao)
€” terms: dE sinz(yo) tan(y,) Bbe [(cosz(yo) sinz('yo)) tan(ly)

* sin(y,) cos(yo) sin(ay) tan(ly) * sin(ay,) tan(ly) ~ sin®(I,)

1,2 costl
l [ Loostly) y,z(l + sin(a))

* sin(yg) cos(y,) sin(ay) tan(,) 2sin®(1,)

) ) lzwll,sm(qo)cos(ao)]} (453)

+ cos( Io)cos(ao)(agcof»(%)'°|25i"(°'o) sin(ly)

loner E ion Soluti

gE_T_gnms. The complete set of e term inner expansion differential

equations are derived above and are repeated below.

d 2Buge~*(1 + Atan(yp)
e (. %)) (4.39)
dE sin(y,)
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dq
=0 __ ~
dt ABe (4.42)

dly Bbe™ cos(oy)

d€ " sin(yg) cos(y,) (4.45)
dQy Bde " sin(ay)

d€ " sin(ly) sin(y,) cos(y,) (4.48)
dag Bée™ sin{og)

d€ " " tan(l,) sin(yg) cos(y,) (4.51)

Solutions to this set of differential equations are derived in Appendix

E and are given below.

g = Koy (ABet+ Kyp )2 exo[-% Cos(ABe ¢ + Ky, )] (4.54)
o - ABe™t + Kq, | (4.55)
Cos !'{ABe¢+K
Iy - Cos“[cos(xoa)cos{g m[um[% ' ( — )]] ' Kosﬂ (4.56)
-1 cos(cy)

Qg = Kg4 - Cos [cos(l(oa)] = Koq (4.57)

( l sinz(lgn) ( ) A
-1 Cos™!(ABe~%+K
- Cos I- z(l(o,)cosz[g ln[:an[% — ]]4(05

\ cos(K¢3)

._-1(Sin(Kg3)
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Sl Uh B G O G B O e e

Sin”! sin(Kg3)
> 5 - Cos"(?\Be"{'rKoz) Ve
1-cos®(Kg3) cos | ¥ Inftan| 2+ > *Kos

gf Terms. The complete set of €' term inner expansion differential

equations are derived above and are repeated below.

du u (1 + Man(yy))
du, -¢ |- g
dg = Yo - 2Be { [ sin(yy)
uoy,cos(yo)(l + Atan('yo)) AUy, J
s'nz(yo) + m) S]n('yo) (440)

da %’
3 G |-1+ ™ (4.43)
dI ) 1 1 a,sin(a,)
d, : ) ___oysimtag) ]
dE Bbe [Y'COS(%)(cosz(yo) sinz(yo)) sin(y,) cos('y,) (4.46)
dQ -e | ysin(ag) /1 1
ks B ¢ | Y% .
dg Boe [ sin(l,) (co?(;o) sinz(yo))

___1; sin(ag) costly) . a,cos(ay) (4.49)

sin“(I,) sin(yg) cos(y,) ~ sin(lg) sin(yy) cos(y,)| "™
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day 1 oMl 1
dt  tan(y,) tan(ly) (cosz(yo) sinz(yo)]

) 1, sin(ag) a,cos(ay)
sin(I,) sin(y,) cos(y,) tan(lp) sin(y,) cos(y,

)} (4.52)

Solutions to this set of differential equations are derived in Appendix

E and are given below.

uy - (ABe": +Ko2 )2 exp[- %Cos’l (?\Be’g + Koz))

2Ky (Ky2 + KgaKygg) B+ 1) 2K, K
XK., + S010 M2 7 ™02 121 121 ™0l o -1 -E,
[ 11 ?\Be_g A Koz - A Sin (?\Be Koz )

2 -
~ [KoiKy2 - Koy Klzll(K02§ - ABe F‘) 2K

Kn, K
e »
\/1 - (ABe 4 kg )? ?\(\ljl - Ko
2\/(1-|< 2) 1 1-(ABe %K, 2| - 2K, (ABe ™t + Ky, ) + 2
x"{ 02 [ 02 ] 02( 02) (4.59)

ABe™¢

+

q - KlZl (Kozé - }\Be-t) + Ktz (460)

K K
132 ABe-c + Koz

l- (I\Be'g + Koz )z

x - Cos!(ABe™ + Ky, ) ]
+1K31K 32 + Ky (2 - KIS) Inj tan{ "+ 2
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[Koz Cos'l(?\Be'{ + Koz) [Cos’l(ABe’z + Koa )]2
+K 34

e ;
_ [cos!(ABe 8+ Ky )]"} }

8

(4.61)

Kygr |Kys2 - 'IEL.:
Q. - K o) ABe 5+ K02 K... K
L TR + _1;12__1}.1__{
\[l - (ABetrky, )" APe T Kez

- Cos'l(l\Be‘§ . Koz)
+ K|43 Inf tan 24-

2

T 41n{ABe *+K ABe ™ + Ko )2
*(K|32K|42*K|44(§‘K|5))[ ( 3 * 02)-( 6+ 02)]

Koz K44 Cos™ (ABe'§ s Koz)
+

.[Cos'l ( ABe™* + Ky, )]3 + 3[Cos-l ( ABe~% + Koy )]5}

: 6 40

[cos (aBe8+ oy )| [cos (nBe ¢k, )] ]] (4.62)

2 8

| +
oy =Kys - Siﬂ'i(?\Be'{ + Koz) + VE?(Z;?
X In [2\/( 1 'Kozzl[ 1 ( ABe %Ky, )2] - 21(02( ABeé+Kq, ) + z] w63

ABe™

+Kiys

+Ky46
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l

gf_'l'_e.nms. The complete set of e term inner expansion differential

equations are derived above and are repeated below.

2.

du _ Au Y v, °sin(y,)

=22 £ 0 2 31 0
- - + -~ ZB .

d¢ Uy + Up¢ ¢ {sm(yo) (cosz(yo)+ cos3(y0)

2( 1 + cos?(y,)
+ Uo(l + i\tan(yo))[yl ( Yo ) Y200slyo)

2sind(y,) sin(y)
R7 u,y,cos(yo)(l + ?\tan(yo))

cosz(yo) sin(y,) sinz(yo)

- hugy,? +u2(l+mn(y°))] (4.41)

sin(yg) cos(yy) sin(yo) '
49 g 1o g ] 2000 (4.44)
-0 (1-u8u0) a2 ). 2 |
dI 1 1
v S - veasi ]
a¢ - Boe {(yzcos(ao) ¥;9;sin(og)) (cosz(yo) sinz(yo)]

. ylzcos(ao) 1 _ 1 .

sin(ty,) cos(yy) (cosz(yo) sin®(y,) )

q2

(—2‘—+ y,z)cos(ao) + ay sin(ao)}

] sin('y,) cos(y,) (4.47)
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dQ - 1 1 [yLa,cos(oj,)
9 o ) |
at = boe [(cosz(yo) sinz(yo)] sin(lo)
Y|2 . Y2 i vl,sin(og) cos(ly)
* sin(y,) cos(y,) sin(ag) sin(ly) * sin(ay) sin(l,) sin(l,)
1 1,2( 1+ cosz(lo)) _
" sin(yy) cos(yg) sin(og) sin(ly) | 2sin’(ly) osin(ag) cos(cp)
= 2 - 'yl (1 + sin (00))
Iy
] 2?:((10)(12 + oy1sin{a) cos(c'o))]] (4.50)
dop M & oot 1 1 [mncos(%)
d€ ” 7 sin’(y,) tan(y,) cos’(yg) sin®(y,))L tan(ly)
Y|z R ‘YL _ yihsm(%)
" sinlyy) cos(yy) sin(ag) tan(ly) * sin(ag) tan(ly) ~  sin¥(1,)

1 [l |2 coslly)

S 2( 1 cin?
* sin('y,) cos(y,) sin(og) tan(ly) ZSinz(lo) Y1 (l sin (a))

a1 sin(ag)cos(ag)
sin(ly)

I,+
+ cos(lgcos(ay) ( acos(ap)-a, sin(ag) ) - £ (4.53)
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Once the asymptotic expansions for the equations of motion are
derived, the outer and inner solutions are ‘matched’ to reduce the number of
unknowns, the constants of integration, resuiting in an equal number of
initial conditions and constants of integration. Thus, the final solutions to
the equations of motion, known as the composite solutions, are used to solve
entry trajectories.

The underlying idea of using outer and inner solutions is to derive
two solutions which model the two dominant forces acting on the entry
vehicle, gravity and air drag. To model each of these forces, two scales, the
independent variables, are used to derive two separate expansions; each are
valid in part of the domain of the entry problem, but neither covers the
entire domain of interest. Although each of the scales do not cover the
entire domain, they do overlap, or have regions where both expansions are
valid. Since the expansions having neighboring regions of validity, they are
blended or matched, resulting in one composite solution which connects the
two previously separate solutions.

In this study, Van Dyke's matching principle (Nayfeh, 1981:282-283)
is used to equate the outer and inner constants of integration. Van Dyke's
principle states that the m* inner expansion of the th outer expansion

equals the n“’ th

outer expansion of the m™ inner expansion, where m,n are
integer values. Simply stated, where y is the derived expansion and i and o

are the outer and inner expansions

(0T -[(0T (464
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To obtain the inner expansion of the outer expansion, the outer
expansion is rewritten in terms of the inner variable, £, and is expanded for
small €, keeping ¢ constant. To obtain the outer expansion of the inner
expansion, the inner expansion is rewritten in terms of the outer variable, h,
and is expanded for small €, keeping h constant. The eo terms of the two

resulting expressions are equated, thus expressing the inner constants of
integration, K;; , in terms of the outer constants of integration, C;;, correct to

Ofe).

Zero Order ¢ Matching

In the following sections, Van Dyke’s matching principle is applied to
the eo inner and outer expansion solutions. The outer expansions will be
rewritten in terms of the inner variable first, and then the inner expansions
will be rewritten in terms of the outer variable. Both composite expansions
will be expanded for € and their resulting ¢l terms will be equated, resulting
in the inner expansion constants of integration being expressed in terms of

the outer expansion constants of integration.

Inner Expansion of the Oyter Expansion Solutions. In this section, the

five outer expansion solutions are rewritten in terms of the inner variable

and expanded to obtain ¢l terms.

Matching Expansion for u,. From Eq (4.22), the e outer
expansion solution for u is
C
o__~01
(Uo) ° 1+h
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Rewriting the outer variable, h, in terms of the inner variable, &, uses

the definition h = ¢ £. Substituting this in the above equation gives
C
o__0|
(Uo) Tl ek
Using the binomial expansion derived as Eq (C.16) gives

l*lee-l-Ee+§ze2+0(e3)-l+0(e)

Thus, the inner expansion of the e outer expansion solution for u is

[(“o)(]]i = Co (4.65)

Matching Expansion for q,.. From Eq (4.23), the ¢? outer

expansion solution for q is

(w2 [

T ot N0 -Gy G177

Rewriting the outer variable, h, in terms of the inner variable, £, uses

the definition h = ¢ £. Substituting this in the above equation gives

NGy

“Coy Coge? E2+ 2(1 - Coy Cople £+ (2 - Cyy Cgg) )

(qo)o - (

Using the binomial expansion derived as Eq (C.17) gives

1 1
- % +
("C0|C02€2€z + 2(] - C0|C02)€€ + (2 - CO|C02))‘/a (2 - C0|C02)

Ofe)
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Thus, the inner expansion of the ¢l outer expansion solution for q is

i Cos
[(%)ol = \’2 ~Cos Coz (4.66)

Matching Expansion for I, From Eq (4.24), the el outer

expansion solution for I is
(1)° = Cos

By inspection, since there is no dependence on h, the inner expansion
of the ¥ outer expansion solution for I is

I(Io)°]i - Cos (4.67)

Matching Expansion for Q. From Eq (4.25), the ¢? outer

expansion solution for Q is

(20)° - Coq

By inspection, since there is no dependence on h, the inner expansion
of the ¢° outer expansion solution for Q is

[(2)°]' = o (4.68)

Matching Expansion for a,.. From Eq (4.26), the el outer

expansion solution for a is
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Rewriting the outer variable, h, in terms of the inner variable, £, uses

the definition h = € £. Substituting this in the above equation gives

Lo

o s | ] l+e
) = Sin rﬂé + Cos

Using the binomial expansion derived as Eq (C.16) gives

|
l+€€-l+0(e)

Thus, the inner expansion of the e outer expansion solution for a is

oi _ qi-l 1-C .
[(0‘0)] Sin [m} Cos (4.69)

Quter Expansion of the Inner Expansiop Solutions. In this section, the

five inner expansion solutions are rewritten in terms of the outer variable
and expanded to obtain e terms.

Matching Expansion for uy. From Eq (4.54), the & inner

expansion solution for u is
(uo)i - K0| (ABe_g + Koz )2 ex4’§ Cos-l (ABQ-{ + K02 )]

Rewriting the inner variable, ¢, in terms of the outer variable, h, uses

the definition £ = h/¢ . Substituting this in the above equation gives

(u)! = Koy (ABe™* ¢ Koy )2 exo[-% Cos™! (ABe™¢ 4 Ky, )]

52




----------[

Since exp(-1/¢) decreases to zero rapidly as e-0, e/¢ = 0 (Nayfeh,
1981:260). Therefore

A Be-h/e + Koz = Koz

Thus, the outer expansion of the (-:0 inner expansion solution for u is
. 2 -
[(UO)|]O - K0|K022 GX{‘X Cos |(K02)] (470)

Matching Expansion for g¢y. From Eq (4.55), the el inner

expansion solution for q is

()" -ABe L Koy

Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition £ = h/e. Substituting this in the above equation gives

(ap) = ABe™™* Ky,

Since exp(-1/¢) decreases to zero rapidly as e-0, e D¢ - 0 (Nayfeh,
1981:260). Therefore

ABe-h/e + Koz - Koz

Thus, the outer expansion of the e inner expansion solution for q is

l(%)i]o = Koz (4.71)

Matching Expansion for I, From Eq (4.56), the el inner

expansion solution for | is
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|

(Io)i - Cos'l[COS( Ko3)004i% ln[tan[% + >

Cos"(ABe"+K02)]] ) J]
* Ros

Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition £ = h/e. Substituting this in the above equation gives

o Cos™'(ABe™¢+Kyy)

(Io)i - Cos'l[cos( K03)cos[§- ln(tan(; + 2 ]) + Kosﬂ

Since exp(-1/¢) decreases to zero rapidly as €~0, eh/¢ . 0. Therefore

?\Be-h/e + Koz - K02
Thus, the outer expansion of the 60 inner expansion solution for I is
-1
ilo -1 & n Cos (Ko,)
[(16)']° - Cos {cos(l(os,)cos[?\ In(tan( et L K| (@72)

Matching Expansion for . From Eq (4.58), the & inner

expansion solution for a is

()" - Sin"[s—:%:)’i)—)]

sin(Kog)

- sin™! | ”
2 ) n Cos” (ABe-g"Koz) 2
1-cos®(Kq3) cos | y Inftan| 2+ > +Kos

Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition £ = h/¢ . Substituting this in the above equation gives
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sin(Kga)

[ﬂ Cos™! (ABe'h/‘+K°2) ]] ]]'/2
*Kos

1-cos?(Kq3) cos{% ln[tan 3 >

(%Y'ﬁf‘[

Since exp(-1/¢) decreases to zero rapidly as ¢~0, e1/¢ = 0. Therefore

A Be-h/e + Koz - Koz

Thus, the outer expansion of the ¢ inner expansion solution for a is

o <o —ked)
[(“0) ] = Sin sin{[(lo)'l } “73)
. -1 Siﬂ(Koﬁ)
- Sin 6 1 Cos™!(Ky,) &
[l -cos?( Kos) cos{x ln(tan(?——z—m' )]*Kog.]]

Matching Expansion for Qy. From Eq (4.57), the ¢l inner

expansion solution for Q is

, ) cos((cg,)i
()" = Koq - Cos l[Ks(K_o,)l] - Koq

l sinz(KJ_l) ( ) )
- Cos™'{ABe %K
- Cos’! 5 n 02
l—cosz(Ko3 )cosz{x In[tan[ ry 2 ]]*Kos
cos(Ky3) /

Rewriting the inner variable, £, in terms of the outer variable, h, uses
the definition £ = h/e. Substituting this in the above equation gives
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(%)" = Koq
{ Slﬂ(Km) ( y ) 2]
-1 Cos ' ABe Mk
- Cos 2 5 m 02
1-cos (K03)cosz{)\ In[tan[ 3 > ]]*Kos
COS(Koa)

Since exp(-1/€) decreases to zero rapidly as -0, eN/¢. 0. Therefore

)\Be.h/e + K02 =- Koz

Thus, the outer expansion of the e inner expansion solution for Q is

{1}

[(26)']° - ko4 - C°5'l[ cos(Kgy)

(4.74)

Ya

| sin(Ko3) : ¢
«Kns- Cos] Cos™ " (Kq,)
Kgq - Cos l-cosz(l(o3)cosz{§In(tan(%»'——i—qz—))ﬂ(os

cos(Ky3)

Matching Zero Order ¢ Solutions. Van Dyke's matching principle is
now used to correlate the inner/outer expansions and outer/inner

expansions. From Eq (4.64) the matching principle states, where Y is an

arbitrary expansion
(T[0T

Thus, the inner/outer expansions and outer/inner expansions derived

above are equated, resulting the the original inner expansion constants of
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integration, Ky, being expressed in terms of the original outer expansion

constants of integration, Cy;. These outer expansion constants of integration

are derived from the initial conditions of the planetary entry problem being

examined.

Blending g, Matching Expansions. Applying the matching
principle, Eq (4.64), to the inner/outer and outer/inner expansions, Eqs
(4.66) and (4.71), for q, gives

C
A /__m___

Blending u, Matching Expansions. Applying the matching
principle to the inner/outer and outer/inner expansions, Eqs (4.65) and
(4.70), for u, gives

2 . .
Cor = Ko,Kozz exa[-x Cos '(Koz)]
Solving for K,, gives

Koy = (2 - Cy;Co)) exo[% Cos"(Koz)] (4.76)

Blending oy Matching Expansions. Applying the matching
principle to the inner/outer and outer/inner expansions, Eqs (4.69) and
(4.73), for o, gives

sin(Ky3) ]

el e O = [
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Using the matching principle and Eq (4.67), Cy; = [(Io)°]i- [(Io)i]?

Substituting this in the above relation and solving for Ky3 gives

1-C
Kos = Sin”? {sm(C03) Slli{Sln ! [ ] : co,,H (4.77)
V1 - Co %Coq

Blending I, Matching Expansions. Applying the matching
principle to the inner/outer and outer/inner expansions, Egs (4.67) and
(4.72), for I gives

Cos”'(K
Co3 = Cos’l{cos(l(o?,)cos[% |n[tan(% + —257(—92]) + Kos]]

Solving for K¢ gives

1 cos(Cga)] 5 ( (E Cos"(l(gz)])
Kgs = Cos [cos(l(m) - Injtan{ 2+ 3 (4.78)

Blending Oy Matching Expansions. Applying the matching
principle to the inner/outer and outer/inner expansions, Eqs (4.68) and
(4.74), for Q, gives

1 05[[(%)‘10}]

c
Cog = Koq - Cos [ cos(Ky3)

Using the matching principle and Eq (4.69)

[(20)°]'- [ (co)] - sin [ﬁ%] + Cos

Substituting this in the above relation and solving for Ky, gives
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-1 -Gy
cos{ Sin V'l c ZC + Cos
. Coc! “Cor Cood
K04 = C04 COS COS(K03) (4.79)

The above derivations provide two separate, outer and inner,
expansions; each is valid in part of the altitude domain, but neither is valid
over the entire domain. Additionally, since the altitude where the inner
expansion is more accurate than the outer expansion is not precisely known,
where to switch from the outer, gravity dominated, expansion to the inner,
air drag dominated, expansion is a not known. To generate an expansion or
solution valid over the entire domain, the inner and outer expansions are
biended to form a composite expansion. Using this composite expansion
negates the requirement to switch from the outer to inner expansions, at an
ambiguous altitude, to obtain the solution to the planetary entry problem.

The composite expansion for e solutions is defined as (Nayfeh, 1981:277)
Yoy vo-[va] - v0e i - [v)] (4.80)
The outer/inner (or inner/outer) expansion above accounts for the
components comm~ between the inner and outer expansions. Thus, in the
altitude domain controlled by the outer expansion, the inner expansion is
negated by the outer/inner expansion and vice versa. The two possibilities
above are equivalent as defined by the matching principle, Eq (4.64).

ol
Throughout the composite expansions below, [Yo] is used, unless otherwise
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noted, since it typically is a simpler and more compact expression than

1]

Yy Composite Expansion. Applying the composite expansion

definition, Eq (4.80), to the outer, inner and inner/outer expansions, Eqs
(4.22), (4.54) and (4.65) respectively, for u, gives

ug = -Corp+ Koy (NBe™e1k s, )2 exp[-% Cos™!(ABe M4,k )] (481)

where K, and K, are given by Eqs (4.76) and (4.75).

g, Composite Expansion. Applying the composite expansion definition
to the outer, inner and outer/inner (here this expansion is simpler than the

inner/outer expansion) expansions, Eqs (4.23), (4.55) and (4.71)
respectively, for q, gives

% - C°‘\/L5 +ABe ™M/ (4.82)
1 - [CorContl + ) - 1]

Io Composite Expansion. Applying the composite expansion definition,

to the outer, inner and inner/outer expansions, Eqs (4.24), (4.56) and (4.67)
respectively, for I, gives

Cos (ABe™M¢ 1 Ky, )
l(c) - COS-I{COS(K03)C0{§ ln[tan[g— + ( 2 *Kos (483)

where Ky, Koy and Ko are given by Eqs (4.75), (4.77) and (4.78),

respectively.

60




- Composite Expansion. Applying the composite expansion definition

to the outer, inner and inner/outer expansions, Eqs (4.26), (4.58) and (4.69)
respectively, for o gives

|- IEQJE sin(Km)
- ﬁf{ ]-&N{

0‘3 - Sin™! \/—;—-—_—(;—ECT . sin(lg)

“f h 1-C |
- Sin’! ~ -sm*[ - J
\ﬁ'cm Co \/1 - Co1“Co2
Sin-l Slﬂ(anl

-1 - 1
1-cos®(Kq3) cos | 3 Inj tan| 2+ 2 +Kos

where Kg,. Ko3 and Ky are given by Eqs (4.75), (4.77) and (4.78),

respectively.

Q0. Composite Expansion. Applying the composite expansion

definition to the outer, inner and inner/outer expansions, Eqs (4.25), (4.57)
and (4.68) respectively, for Q, gives

c

Cos| &g
¢ -1
Qo - K04 - COS (COS(K03)] - K04 (485)
| sin’( Koa). ( _ ) &
_ -1 COS-| ABe™ /C*Koz
Cos I -cos¥( K03)cosz{§ ln(tan[-}r > +Kos
cos(Kg3)
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where Kg,, Kg3. Kgq and Kyg are given by Eqs (4.75), (4.77), (4.79)
and (4.78), respectively.

First Order ¢ Matchi

In the following sections, Van Dyke's matching principle is applied to
the ¢! inner and outer expansion solutions. The outer expansions will be
rewritten in terms of the inner variable first, and then the inner expansions
will be rewritten in terms of the outer variable. Both composite expansions
will be expanded for € and their resulting e terms will be equated, resulting
in the inner expansion constants of integration being expressed in terms of

the outer expansion constants of integration.

Inner Expansion of the Quter Expansion Solutions. In this section, the

five outer expansion solutions are rewritten in terms of the inner variable

and expanded to obtain ¢l terms.

Matching Expansion for u,. From Eq (4.27), the ¢! outer

expansion solution for u is

C
(“l)o'ﬁuﬁ

Rewriting the outer variable, h, in terms of the inner variable, £, uses
the definition h = € €. Substituting this in the above equation gives
C
o_ 1§
(ul) Tl €t

Using the binomial expansion derived as Eq (C.16) gives
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1
Teg-1-tergld o) -1 00e)

Thus, the inner expansion of the ¢! outer expansion solution for u is

[(u])oli =Cyy (4.86)

Matching Expansion for q;.. From Eq (4.28), the ¢! outer

expansion solution for q is

( < + ‘\j +
(0,)° [Veoitt + 1) e hJ
Q) -

3
2

(2 - Cy,Coal1 + h))

Rewriting the outer variable, h, in terms of the inner variable, £, uses

the definition h = € £. Substituting this in the above equation gives

C
+C \jl-b
(a))° (Qcm(l"ﬁi) 2 eé)
l =

3
(2 - CoyCosl1 + € ©))?

Using the binomial expansion derived as Eqs (C.9) and (C.17) gives

1

m-l*de) and V1+eE=1+0l(e)

3

3 3
(2-Cy(Cogll + € ©) 2= ((2 - CpyCop) - CyyCop € €) 2

- Z (-31:/2)(2‘(301(302).3/ 2 (-CoiCozedf

k=0
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z (-1 () (2-CorCo Yo%

™) (-CorCoz e &K
k=0

le

- (2- CyiCoz) 2+ Ole)

Thus, the inner expansion of the el outer expansion solution for q is

]i . {J—CL‘:* an]

3 (4.87)

Matching Expansion for I;. From Eq (4.29), the ¢! outer

expansion solution for I is
(II )0 =Cy3

By inspection, since there is no dependence on h, the inner expansion

of the ¢! outer expansion solution for I is

[('l)oli =Cp3 (4.88)

Matching Expansion for Q,. From Eq (4.30), the ¢! outer

expansion solution for Q is
(2)°=Cyq

By inspection, since there is no dependence on h, the inner expansion

of the ¢! outer expansion solution for Q is

[(Ql)oli = Ciq (4.89)
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Matching Expansion for a,.. From Eq (4.31), the el outer

expansion solution for a is

(an * CIICOZ\]C_OI)(I +h) -

(al)o'(

Rewriting the outer variable, h, in terms of the inner variable, £, uses

the definition h = € £. Substituting this in the above equation gives

(Ciz* CriConVCor )1+ 8) -

! - C0|2C02) ‘Co| + 2(1 +€ E) = C0|C02(l +€ 5)2

(“l)o‘ (

Using the binomial expansion derived as Eq (C.17) gives

l+e&=1+0(e) and

|
(’C0|C02€2 EZ + 2(1 - C0|C02) €E +2- COI(C02 + l))‘/2

1
(2 = Co|(C024‘ l)

)1/3"‘ Ole)

Thus, the inner expansion of the ¢! outer expansion solution for a is

C ,
Ci2(Cor+ 1) ’Vé‘l' (CoiCoz- 1)
oL

(1 - Cot%Cop JNZ - Cgy(Coz + 1)

[(“l )oli =

+ CIS (4.90)

65




Outer Expansion of the Inner Expansion Solutions. In this section, the

five inner expansion solutions are rewritten in terms of the outer variable

and expanded to obtain e° terms.

Matching Expansion for u;. From Eq (4.59), the el inner

expansion solution for u is

(u,)' - (ABe 8+ Ky )2 exp(- %cos-n (ABet+ K ))

X {K“ , %Kot (K2 + KoaKyy) (€+ 1) 2Ky Koy

sin"'(ABe %+ Ky,
ABe™% + Ky, A (hBe? )

2 -

~ [KoiKiz - Koy Kml(KozE - ABe {) 21(27 Koy Kya1
+ - +

"{z\/ (1-Kos?) [ 1-0NBe 8k 2] - 2K g (B + Ko ) + z]}
X

ABe~%

Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition £ = h/e . Substituting this in the above equation gives

(u,)i - (ABeMe 1k, )2 exp(- 2 Cos!(ABe e KO,))

i [Ku  Zor(Kiz KopKin) (€ 1) 2Kz Koy sin”!(ABe M€ Ky, )

?\Be-.h/e + K02 A

2 -
~ [KoiKiz - Koy Kml("oz § - ABe h/e)

, 2Kz Kg K ¢
1- (ABe'h/'+ Koz)z A !‘jl ’Kozz
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| [2\/ (1-Kggd) [ 1-NBe ™M ek 2] - 2Ky (A4 Ky ) + z] H
*n AB

Since exp(-1/¢) decreases to zero rapidly as ¢-0, e /¢ = 0 (Nayfeh,
1981:260). Therefore

A Be-hle + Koz - Koz

Thus, the outer expansion of the el inner expansion solution for u is

. 2. K
[(w)']° - koo? “p(- n Cos |(K°2)) [K“ ' 2K°'(E;: ' K'z') A

2K, K 2K, K 4(1-Ky,2)
- = sin(Kgp) + A‘\ﬁd'f_z[‘(lzﬁ* K2y ‘“(_('TBM_)”“'N)
- N2

Matching Expansion for q,. From Eq (4.60), the el inner

expansion solution for q is

(a1)' =Kz (K025 - ?‘Be-g) +Ky2

Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition £ = h/e . Substituting this in the above equation gives

(1) - Ky (Koz §- "Be-h/c) +Ky2

Since exp(-1/¢) decreases to zero rapidly as e-0, e1/¢ - 0 (Nayfeh,
1981:260). Therefore

ABeMe. g

Thus, the outer expansion of the el inner expansion solution for q is
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[(ql)ilo' Ky2Ko2 €+ K2 (4.92)

Matching Expansion for [,. From Eq (4.61), the ¢! inner

expansion solution for I is

Ky3 |K
&

(1) -Kis 3
TN A (ABet kg, )

s - Cos'l(?\Be'§+ Koz)
+|K131K 32 + Ky34 (2 'Kns) Inf tan| =+ 2

[Koz Cos’! (ABe ™ + Ky [C°s-l("5e-§ * Koz )]2
*Kyaq -

Vi ke 2
- [cos!{(ABe™¢ + Ky, )]"} }

8

Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition & = h/e . Substituting this in the above equation gives

- - Cos'l(ABe'h/ €. Koz) ]
*1Ky3iKy32 + K34 (?‘ Kns) I tan) 2 + 2
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V1- Ko’ 2

_ [cos1(ABe™+ Ky )]4] }

8

[K02 Cos'l(Z\Be'h/ ©+Kyp) [COS"(?\Be"‘/ *+ Koz )]Z
+Ky3q

Since exp(-1/¢) decreases to zero rapidly as -0, e1/¢ = 0 (Nayfeh,
1981:260). Therefore

A Be_h/e + K02 - Koz

Thus, the outer expansion of the el inner expansion solution for [ is

K Kia9 -
: g4 131 [M327 K
[(l.)'r.x.m{ T
1 ‘Koz

-1
1 m Cos " (Ko,)
. [Kme *+ K34 (}' - KIS)] "'[‘a"(z* 2 )]

Koy Cos(Kgp) |Cos ! Kop)|2 [Coslikyy)]
’K|34 ? 2 = 2 = 8 (493)
l'Koz

Matching Expansion for g,. From Eq (4.63), the ¢! inner

expansion solution for « is

(o) =K;s - sm"(we'f . KO,) . VﬁL.z. (e
1-Ko,
+In [2\/( : 'K°2Z{ 1-(ABe %k, )2] - 2Ky (NBe gy ) + 2] }

AB
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Rewriting the inner variable, £, in terms of the outer variable, h, uses

the definition € = h/e . Substituting this in the above equation gives

; K
() = Kys - sin” (ABe /%« Ky ) + ﬁ?{ 3
i [2\/ (1Ko 1-(NBe™ 44Ky J2] - 2Kgp(ABE 41Ky ) + 2]}

AB

Since exp(-1/¢) decreases to zero rapidly as ¢-0, e /¢ - 0 (Nayfeh,
1981:260). Therefore

ABe™P¢ .+ Koy = Koy

Thus, the outer expansion of the el inner expansion solution for a is

io-l( - Si 'I(K )*vﬁL[ + | [4(1-1(022)” (4.94)
[(“1)] 1s = O "(Kgp l-K022 4 nT

Matching Expansion for Q;. From Eq (4.62), the ¢! inner
expansion solution for Q is

~

; Jha® K2 K133
() -Ke+y ¢ —14
ABe* + K¢,
-~
(o Cost(ABe+Kyy)
"K|43| tan\Z“’_ 2

I 4in{ABet+K ABe~¢ + Koo )2
*(K|32K|42’K“4(5-K'5))[ ( 23 * 02)-( e 6" 02)]
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o - 1

Kg2Kyaq Cos™ (7\13‘?-C +Kg2)

\/1 - Ko’

-[Cos'l (ABe'g + Kop )]3 3[C°s-l("5e-§ + Koz )]
.

6 40

[cost(ABe v key) P [cost (ABeE K, )]"} J

+K
I46- 2 + 3

+

5
+Kigs

Rewriting the inner variable, €, in terms of the outer variable, h, uses

the definition £ = h/e . Substituting this in the above equation gives

K33
Kiai1 | K132 - 5 h/e
(@)= Kyq s e Xw) KigKy
1) *Ngty + —h/e
1 - (?\Be_h/c . Kog )2 ?\Be + Koz

n COS-l (?\Be’h/e + Koz)
+ K|43 Inf tan}— +

4 2

s 41n(ABe™Me ABe M. Ky, )2
*[Knazxuz*xn«(f‘xls)l ( 3 02)-( - 02)

Koz Kiga Cos™!(ABe™/ 4 Koz)
Q l - Kozz

+ Kyqs -[COS'I(’\BQ:A * Koz )]3 . 3[Cos'l (?\B:(-)h/e * Koz )]5

P[Cos'l (ABe™es ky, ) [ [Cos‘l (ABee 4 Ky )T} |
+

+ K
ol 2 8 )
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Since exp(-1/¢) decreases to zero rapidly as -0, e'h/¢ = 0 (Nayfeh,
1981:260). Therefore

A Be-h/e + Koz - Koz

Thus, the outer expansion of the el inner expansion solution for Q is

, 5 Km(“m‘i ) Koo K
[(Q )|]°_K L2 02/, 2142 133
i TREY > Koz

\/I'Koz
-1
nn Cos '(K,,)
s )

n
* (Ktszxuz*xl«(}f - Kns)l——-‘lz-4 ln;l( ). E%ZE]

-1
\/1 - Koz

- 3 - 1

v Koo | 1COS lkqy)| 3[Cos l(Koz)]s

143 6 + 40 i

r{ -1 2 -1 ]
K, | LC02 ;Koz) + | cos ;Koz’lq] | (4.95)

Matching First Order ¢ Sojutions. Van Dyke's matching principle is
now used to correlate the inner/outer expansions and outer/inner

expansions. From Eq (4.64) the matching principle states, where Y is an

arbitrary expansion

(T[0T
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Thus, the inner/outer expansions and outer/inner expansions derived

above are equated, resulting in the original inner expansion constants of
integration, K, being expressed in terms of the original outer expansion

constants of integration, C,;. These outer expansion constants of integration

are derived from the initial conditions of the planetary entry problem being

examined.

Blending q, Matching Expansions. Applying the matching

principle, Eq (4.64), to the inner/outer and outer/inner expansions, Eqs
(4.87) and (4.92), fur q, gives

- Ky24Ko2 € (4.96)

Blending u; Matching Expansions. Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.86) and
(4.91), for u, gives

2 K
C“ =- K022 elp(' XCOS l(Koz)) [K“ + 2K0|(E;'§"’ K|2IJ (E + l)

2K, K 2K, K 4(1-K,,2)
- —u)'\l—ngiﬂ-l(Koz) + f*—:%[l(nb K2 ln(—TBQL)]}
AV - Ko,
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Solving for K, gives

Ko C K 2K, K
Ky -—%o—lu-[zxo,(#+ K,,,) (€ + 1)] » —1220 g5 (K )

A
2K, K [ 4(1-Kpel)
ALY I LKoo
- K,,E+K m( ]] (4.97)
\ {I‘Kozz 12 121 \B

Blending «, Matching Expansions. Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.90) and
(4.94), for a; gives

C
Cra(Cop+1)+ —u\[E‘O_L(Concoz -1)

(1 - Cot®Cop N2 - Coy(Cop + 1)

+Cys = Kys - Sin"H(Kyy)

iyl

Solving for K ;¢ gives

C
Cyp (Cor+ 1)+ # (Co1Coz - 1)
01

K« =Cia *
s (‘ - ConzCoz)\E‘ Co1(Co2+ 1)

-%{Cdn [4(""022)” (4.98)
1-Kgp? B

Blending I, Matching Expansions. Applying the matching

principle to the inr~r/outer and outer/inner expansions, Eqs (4.88) and
(4.93), for I, gives

+ Sin"!(Ky,)

74




K
~133
Kist |[Kisz - Ko;

C K b
137 ™3
\/l - Kozz
-1
m n Cos (K,,)
* [Kme +Ky34 (E - KlS)J ln[tan(;+ —Z'QL)]

" [K“ Cos Lk ) [Cos’l(l((,z)l2 ] [Cos'l(Koz)ld]}
134

V1Ko p2 2 C

Solving for K, gives

K

Ky3 !Km - T(l:f'
Kis=Cia-x \/;?
- Koz

-1
i n Cos '(Kq,)
* [KmKnsz *Kyzq (E - Kns]] "‘[‘3"(2* _Z_QL)]

Koy Cos 1 (K,) [C°5-1(Koz)]2 [C°S-1(Koz)]
*Kyzq ‘of]‘%‘ 2 - 3 (4.99)
l - K02

Blending Q, Matching Expansions. Applying the matching
principle to the inner/outer and outer/inner expansions, Eqs (4.89) and
(4.95), for Q, gives

o

K41 (Km - Elﬁ)
) Koz K42 K133

Cra=Kpgty *TK
\/1 Koy o

n CoslK,,)
+Ki 'f{w"[z* —z“‘]]
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(Kme*Km(E - K:s)) [4 In(Kgp) —Qﬁ]

-[Cos'l(l(oz) 3[Cos'l(l(02)]

+K
143 i 6 + 40 |
K —[COS-l(Koz) 2 [Cos-l(Koz)]v} i
*Riq6 +
L 2 8 )

Solving for K, gives

Kia1 !Kl32 Koz Ky Kia

Kig=Cq- ;\ K
l i Koz 02
n Cos’l(Kyy)
+ K143 inf tan Z* 2

(K|32K142*K|«(2 - KIS)) [i'_"(_KQZ_ _in]

+ Kigs

[ cos k)] 3[c°s"(xo,)]]
! 6 ) 40

r[Cos'l(l(oz)]2 [Cos’l(Koz)r”

+K
l46- 2 + 3

First Order ¢ Soluti he Equations of Moti

K, 44 Cos 1 (K,,)
Jl -Koo®

Koz K:!! Cos” l(KQZ)
l - K02

(4.100)

As in the derivation of eo solutions to the equations of motion, the

composite expansion or solution is used to blend the distinct, but
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overlapping, outer and inner expansions to give an expansion valid over the
entire altitude domain. The composite expansion for el solutions is defined
as (Nayfeh, 1981:277)

SR COREN L) -[Y‘,’]i (4.101)

oli
Also, as in the ¢¥ derivation, [Y,] is used, unless otherwise noted,

ile
since it typically is a simpler and more compact expression than [Y,] )

u, Composite Expansion. Applying the composite expansion

definition, Eq (4.80), to the outer, inner and inner/outer expansions, Eqs
(4.27), (4.59) and (4.86) respectively, for u; gives

uf - -C,,%«» (2\Be"‘/e + Koo )2 exp(- %Cos"(?\Be’h/e + Koz))

h
2Koy (K2 * KooKy21) (Z *ﬂ 2K,

X K“ +
ABe MK,

iﬁl sin"! (ABeM%K,q, )

2 h -h/
> [KoiKy2 - Koy Kyzy|[Koz ¢ - NBe™¢

21(27 Koy Kj1
+
l- (?\Be-h/e + Koz )2 A1 - Kozz
2\/ (1-KgpD) [ 1-0Be Wik g2 |- 2Ky (ABe e+ Kqp )42
X1 (4.102)

ABe"h/C

where K. Kga. K{; and K, are given by Eqs (4.76), (4.75), (4.96)
and (E.26), respectively.
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4,.Composite Expansion. Applying the composite expansion definition
to the outer, inner and outer/inner (here this expansion is simpler than the

inner/outer expansion) expansions, Eqs (4.28), (4.60) and (4.92)
respectively, for q, gives

C
—l
C,N1+h
e We,am 12T

q; -

-ABeMe (4.103)

N

(2 - CoiCopl1 + 1))

I, Composite Expansion. Applying the composite expansion definition,

to the outer, inner and inner/outer expansions, Eqs (4.29), (4.61) and (4.88)
respectively, for I, gives

n n COS-I(ABe-h/e + Koz) }
+K31Ky32 - K34 (E'Kls) Inf tan| 7+ 2

Koz Cos'l(}\Be-h/e . Koz) [COS-I(ABe-h/e ) Koz)]z
L - Kog? - 2

[cos1(ABee. k,, )]“”
- : (4.104)

+Ky34

where Kg,, K, K3, K32, K} 33, and K 3, are given by Egs (4.75),
(4.98) and (E.30), respectively.
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g;-Composite Expansion. Applying the composite expansion definition

to the outer, inner and inner/outer expansions, Eqs (4.31), (4.63) and (4.90)

respectively, for a, gives

C
(€12 + €y Coz\Cor )(1+h) - ‘_\fé—L+ co,c,z!

c 01

Gy = +Kys
(1 - Coy2Coz )N -Coy + 2(1+h) - Cy Copl 1+h)?

K

- Sin'l(?\Be°h/e + Koz) + \/—l!ll(z—_;
Koz

X "{2 (1-K022{l -(?\Be'h/e + K02 )2] - ZKoz(?\Be-hle + K02)+ 2]

ABe—h/e

C
Cyz (Coy+ 1)+ -\TCMOT (Co1Coz- 1)

(1 - Coy2Coy )\]2 - Coy(Cop + 1)

where K, and K are given by Eqs (4.75) and (4.98).

&

. Applying the composite expansion

(4.105)

definition to the outer, inner and inner/outer expansions, Eqs (4.30), (4.62)

and (4.89) respectively, for Q, gives
Kiaz
Kia [Km oh/ )
\/l (?\Be-hh . K ) }\Be_h/e + Koz

'KH
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o - 1

- Cos'l(?\Be'h/ e~~l(02)
“K|43] tan‘;*

2

m 4 In{ ABe Mk ABe Mek )2
' [Kme * Kl«['z" Kls))[ ( 3 02) ] ( : ' 02)

Koz K144 Cos’ L? e Kgy)
\/_
[ ( oMok )]3 3[(:08-1 (AB e-h/e+K02)]5jl

* KHS + 20
[()F[()]ﬂ

where Koo, K41 K142 K 43 K44 K45 and K 46 are given by Eqs
{(4.75) and (E.32).

Equati  Moti

Once the composite expansions for the five dependent variables (u, q,
I, Q and a) are determined, the approximate, analytical solution to the five

equations of motion are given as

C c
u€ = ug + (u,)e + Oe?)

) ['Co:% + Koy (ABe ey, )2 em{% Cos'!(ABe™“+koy )] ]
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. [-cl ' l?h + (?\Be'h/‘ + Ko, )2 exp(- %Cos'1 (?\Be'h/‘ + Koa ))

h
2K (K 2+KAnK L—d)
X[K,,+ on( 12*Ro2 121) € ) KKy Sip-!
-h/e A
ABe “Koz

i
i
i
i
1
' A fo il 197 i,
1
i
]

(?\Be-h/e’Koz)

1 - (3Be™e gy ) T -k
"I[Z\M’Kozz)[ 1-(NBe™4okgg 2 |-2Kgq (ABe M 40ke, )*z]} }e
X

ABe"‘h/e

. O(ez) (4.107)

q¢ - qg + (q(:)e + 0(d)

,_’ Cy Gy + ABe h/¢
A1 - [CorConll + ) - 1]

’T=M=vc CiV1+h
(Cm“"h) N ]

- }\Be‘h"] e+ O(e)) (4.108)
L (2-CoiCoplt + M)?

€ - Ip+ (I )e + ()

. Cos™! (2\Be'h/e + Koz ))] ]]
*Kos

. !
= Cos l{COS(K(n)co{X ln[tan{; + 2
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Ky [Kisz - -It(:/e
§ ABe + Koz
+ K'3+

"L A1 - (ABee gy, )

P n Cos-l(}\Be-h/G*‘Koz)
+1K31K 32 + K34 (5"‘15) In tan| "+ 2

[Koz Cos!(ABe ™%+ Ky, ) [Cos (ABe™% 4 Koy )
+ Kyaq -

V1- Koo ’
e

8

(4.109)

<

af - a; + (cxl)e ()

Co
(1 - Coy%Coa JN-Coy + 2(1+h) - Co,Cop1+h)2
01 “~02 01 01-02

+Kys

C
l(CmCuCoz\fE;)(hh) - +Co1Cy2

-SinH(ABe™M¢4 Kyy ) « J%ozz
X lr{z\ﬂl'xozz{l-(?\Be'h/ '+K02)2]-2K02(?\Be’h/ °+K02)+2]

ABe h/¢




C
Cia (o 1) o (G- l)}e L0l

— (4.110)
(1 - C1%Coz )\/2 - Cpy(Cpg + 1)

of - 05+ af)e + 0

=

cos(Ky3)

r STILSE N l,(,l,"‘L

‘ : ABe "+ Koz KipKpzy
+ K“ + X ~h/ 2 * }\Be-h/e +K

\ 1 - (ABe ¢+ Kyp) 02

n Cos'l(?\Be‘h’ “Ko;)
+ Kyq3in tan| 2+ >

(

= K04 - COS-l

n 4In ABe-h/e-l-K ?\Be-h/eﬂ( 2
+(K'”K“2+K"“(7K"D[ ( 3 02)'( ; )

+K
148 - - o

P[cos'l (ABeMerg,, )]3 3[c°s-1 (ABe ek, )]5}
.

hges -[Cos'l ( ABe Mk, )]2 + [C os! ( ABe MK, )]4}

2 8

+

Koz K144 C°'°‘-l("l3‘?.h/e + Koz )}}e + O(e}) (4.111)

I - Kop?
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where the inner expansion constants K,,-K,s are given in Egs (4.75)-(4.79)
and K, -K,s are given in Eqs (4.96)-(4.100).

The above set of five equations form an approximate, analytical
solution to the set of five, coupled, first order, non-linear ODEs (Eqs (4.1)-
(4.5)) that describe the trajectory of a vehicle entering a non-rotating

planetary atmosphere. This solution set is first order accurate with respect
to the small perturbation parsmeter 1/fr,, which is approximately 1/900

for earth entry. Since a solution is definedas Y = Y, + Y e+ O(e?) and the
orders of Y, and Y, are similar by definition, addition of the first order
solution Y€ increases the accuracy of the solution by three orders of
magnitude.

Eqs (4.107)-(4.111) are relatively simple and accurate analytical
solutions to the complex physical system of atmospheric entry. They
provide a readily available analysis which retains the subtleties of the
original system. It is this characteristic of analytical solutions which makes

them more favorable than obtaining solutions using numerical analyses.
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V. Validity of the Soluti he Equations of Mot 1
- . N ical Solut]

In Section IV, analytical solutions are derived solving the set of five,
coupled, first order, non-linear ODEs that describe the trajectory of a
vehicle entering a non-rotating planetary atmosphere. These solutions,
given as Eqs (4.107)-(4.111), are first order accurate to the small
perturbation parameter 1/pr,, which is approximately 1/900 for earth
entry. They provide a relatively simple and accurate solution to the
complex, non-linear physical phenomena of atmospheric entry, retaining the

trends and subtleties that are lost in an analysis using numerical methods.

. ison of Analvtical and Numerical Resul

To demonstrate the first order accurate analytical solution derived in
Section IV (Eqs (4.106)-(4.111)), the differential equations of motion (Eqs
(4.1)-(4.5)) are numerically integrated and compared to the results from the

derived analytical solutions for the same set of initial conditions.

Numerical Approach. To numerically integrate the five equations of
motions derived in Section III (Eqs (3.60')-(3.64)). a fourth-order predictor-
corrector integrating algorithm is used {Wiesel, 1989:119-123). The
integrating step, Ah, is decreased and the equations of motion are
repeatedly integrated until the resulting data from the above integration

remains unchanged. The numerical integrator given by Wiesel assumes an




independent variable that is monotonically increasing or decreasing. For
this study, the non-dimensional altitude h is the independent variable, but it
is not monotonically decreasing, since the skipping of the re-entry vehicle
results in a local oscillation in altitude. Thus, the numerical integrator is
stightly modified to account for this altitude oscillation by changing the sign
of the altitude increment based on the sign of the flight path angle.(Ah > 0 if
y>0and Ah <0 if y < 0)

Solutjon Comparison. To compare the analytical and numerical
techniques to solve the differential equations of motion, the initial conditions
for an Apollo-type reentry vehicle are used (Hillje, 1969:2-10). Figures F1-
FS (Appendix F) show that the analytical solution give very accurate
solutions to the equations of motion. The advantage of having a first order
accurate solution is evident in the increased solution accuracy around skip
points, where the flight path angle changes sign, and at low altitudes, where

aerodynamic forces dominate.

Derivation ¢ ,

To derive analytical solutions to the five ODE equations of motion,
Eqs (4.1)-(4.5), several assumptions or approximations were made to arrive
at analytical solutions. The first approximations used were introduced
when the small perturbation expansions for sin(a + be + ce? +0(e’)) and
cos(a + be + ce? +O(ed)) were performed. Although the results of the
expansions were not exact, they were correct to order e2. Since the final

solutions were order ¢ and ¢! , this assumption does not effect the zero and
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first order solutions. This conclusion is also applicable to the binomial
expansions used in initial expansion of the equations of motion and the zero
and first order matching expansions.

The next approximation used was to determine the small perturbation
expansion for tan(a + be + ce? +O(€%)). Although the expansion is correct to
order ez, like the sine and cosine expansions above, it assumed tan(a) <
1/tan(be + ce? + O()). Since b and ¢ ~ O(1) and ¢ ~ 0(0.001), this is a valid
assumption for most common orbits. The exceptions to this inequality are

discussed in the next section.
The remaining assumptions used during the derivation of the zero
and first order solutions were made to solve the first order, inner

expansions. Through numerical analysis, the only significant approximation
made was in deriving the q, inner solution, where

j (ABe™?+ Ky )exp{%Cos" (ABe%+ Ky )] de

- I(?\Be-{ + K02 )exp[%Cos-l (Koz)] dE (51]

Since a 'q,’ term is present in all of the first order ODEs, the error

induced by this approximation is present in all of the first order solutions.
This is reflected in Figures E3-E6.

Solution Validi | Restricti

Even before the above assumptions and approximations were used,

the solutions to the five equations of motion were restricted due to
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singularities found in the ODEs. These singularities were present in every
ODE except dq/dh and involved terms of sec(+y), csc(y) and csc(I). Thus,
the solutions to the ODESs, whether numerical or analytical, become
numerically unstable at extremely shallow flight path angles, || « 1° or at
extremely steep flight path angles, 'y = -90°. The latter entry trajectory is
not realistic since it results in enormous aerodynamic heating and
decelerating forces. The solutions also encounter instabilities when the
entry body is in the equatorial plane, I =~ 0°.

In using the small perturbation expansions for the tangent of I and vy,
the approximations impose restrictions on the validity of the derived
analytical solutions. As mentioned above, the expansions assumed tan(l) «
1/tan(Ie + 1262 + (%)) and tan(y) « 1/tan(y e + y,e? + O(e?)). The
assumptions become invalid when O(tan(1)) = O(1/tan(le + Le? + o)) or
O(tan(y)) = O(1/tan(y e + y2e2 + O(e3))). For earth re-entry, where ¢ =
17900, the above assumptions break down when 85° < |I| (or {yl} < 95° For
martian re-entry, where the mean planetary radius is smaller than the
earth’s and the atmosphere is thinner than earth's (¢ = 17350 (Vinh and
others, 1980:5)), the above assumptions break down when 80° < Il (or |yl) ¢
90°. Thus, the approximate solutions become invalid at extremely steep
entry trajectories or near polar orbits.

The assumption given as Eq (5.1) was used to facilitate the first
order, inner solution for q;. The approximation ABe~% ~ 0 was found
accurate until the entry vehicle penetrated the lowest regions of the

atmosphere, when the approximation slightly underestimated the changes
in q,, since as £-0, e’$ = 1. Since this approximation is carried forward to

the first order, inner expansion ODEs for I, Q; and «;, in the form of the q,

terms present in each of the ODEs, this underestimation trend is present in
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all of the above solutions, as shown in Figures E4-E6. The induced errors
occur at very low altitudes, where terminal course corrections, such as
lift/drag modulation, are performed. But lift/drag modulation entails
changing the lift/drag coefficient, which was assumed constant for this

study. Thus, the errors induced by the above approximation are de-
emphasized.
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VI Conclusions and Recommendations

Conclusions

Using the Method of Matched Asymptotic Expansions, this study
developed first order accurate, analytical solutions (Eqs (4.107)-(4.111)) to
the five, coupled, non-linear equations of motion describing three-
dimensional, planetary atmospheric entry. A non-rotating planet and
atmosphere were assumed, as well as a constant lift-to-drag ratio and
ballistic coefficient. The validity of the developed solutions are coordinate
dependent since singularities are present in the original equations of motion.
As a result of this study, the following conclusions are made

1. A computerized, symbolic, algebraic manipulator greatly reduced
the workload in generating the zero and first order asymptotic
expansions. Application of a similar program could be used in
generating similar expansions for any arbitrary set of differential
equations.

2. Exact solutions were found for both of the zero order, outer and
inner asymptotic expansions and the first order outer asymptotic
expansions. To derive analytical solutions for the first order inner
asymptotic expansions, approximations were used resulting in
underestimation of the aerodynamic turning at low altitudes. This
inaccuracy becomes evident at low altitudes where terminal

maneuvers are initiated.
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Recommendations

Based on the analysis of the assumptions and the results of this study,

the following recommendations for further study are proposed.

1. Using Mathematica™ greatly reduced the workload of finding the
outer and inner asymptotic expansions to the equations of motion.
Development of a generalized version of the Mathematica™
program used in this study would result in a program generating
the n*! order asymptotic expansions for any arbitrary differential
equation.

2. Due to approximations in small perturbations expansions, the

application of this study is not valid for entry trajectories near

polar orbits. A different set of coordinate transformations and

) G Gl &GN G G G =N mE &ae

subsequent expansions should be applied to extend the domain of
solutions near this orbital state.

3. Due to approximations in the first order, inner expansion solution
for q, the flight path angle, the solutions found in this study
become inaccurate for low vehicle altitudes. Further investigation
should be undertaken to find either exact solutions to the first
order, inner expansion ODEs or better approximations which
would increase the accuracy of the analytical solutions at low

altitudes.
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Appendix A:
I [ . { Pl ic Coordi Orbital
El Using Spherical Tri

This appendix derives the relations between the planetocentric
angles from the equations'of motion(6, ¢ and ¢ ) and the classical orbital
elements (o, Q and I). Since this study models the planet as a sphere (Vinh
and others, 1980:2), spherical trigonometry is used to derive relationships
between the planetocentric angles and the orbital elements (Bain, 1989).

Figure Al shows the relationship between the two related variable
sets in an osculating orbit (Vinh and others, 1980:257). For clarity, Figure
A2 shows the pertinent variables as a spherical triangle formed by the arcs
of three great circles on the surface of a sphere (planet). By definition, the
interior angles are angles between the curved line segments and the
exterior angles are the angles between the linear segments emanating from
the origin, point O. The following is a list of the interior and exterior angles

used in the subsequent derivation.

Exterior Angles: a=-6-Q b-¢ c=a
Interior Angles: A=1/2- B=-1 C=m/2

To relate the above two variable sets, the two fundamental formulas
of spherical trigonometry, the law of sines and the law of cosines, are used
(Fitzpatrick, 1970:118-120). While the law of sines relates the ratios of

interior and opposing exterior angles, the law of cosines relates the cosine of
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Figure Al. Reference Coordinate System and Orbital
Elements

an interior angle as the sum of the products of the cosines of the other two
interior angles and the products of the sines of the other two interior angles

with the cosine of the opposing exterjor angle.

sin(a) sin(b) sin(c) (A1)
sin(A) " sin(B) " sin(C) '

Law of Cosines:  cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) (A.2)

Law of Sines:

To derive the three spherical trigonometric relationships, known

values are first substituted into the law of sines

sin(0-Q)  sin(¢p) sin(a) (A3)
sin(r/2 - ¢) ~ sin(I) " sin(1/2) '
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Figure A2. Spherical Triangle Relating
Planetocentric Angles to Orbital Elements

Since sin(11/2 - ¢) = cos( ) and sin(1r/2) = 1, two relations arise from
Eq (A.3) and making use of the common trigonometric relationship,

sin%(x) + cos?(x) = 1:

. sin(¢) 2 1 sin®(¢)

sin(a) = sin(l) or cos“(a)=1 ;ﬁ% (A4)
. . 2 2

sin(6-Q) = sm(Si)nc(:;))s( ) or cosz(e -Q)=1- Sin (s?t)‘zi?: ) (A.5)

Using the law of cosines gives the first relationship as

cos(a)= cos(0 - Q) cos(¢) + sin(d - Q) sin(¢) cos(n/2) or
cos(a)= cos(6 - Q) cos(4) (A.6)
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Squaring (A.6) and substituting Eqs (A.4) and (A.5) into (A.6) gives

.2 . 2 2
_sin“(¢) _[,_sin () cos“(y)) 2
l sin(1) (1 sin%(1) cos™(4)

Simplifying the above expression gives the second relationship:

cos(1) = tcos() cos(4) (A7)

To derive the third relationship, Eq (A.3) also gives

sin(6 - Q) - cos(¢ )sin(¢)

sin(l) (A3)
But from Eq (A.7)
cos((p) = g::((;)) (A.9)

Substituting Eq (A.9) into Eq (A.8) gives the third relationship:

. tan(4)
sin(6-Q) = tan(l) (A.10)

Thus Eqs (A.6), (A.7) and (A.10) give the three spherical
trigonometric relationships required to transform the planetocentric angles
to classical orbital elements. For these equations to be useful, they will be
reformed to match the equations of motion Eqs (3.46)-(3.50). Eq (A.4) is
already in the correct format. Repeating Eq (A.6)

cos(0 - Q) -%g%% (A11)

But from the law of cosines
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cos(6 - Q) = cos(¢) cos(a) + sin(¢) sin(a) cos(m1/2 - )
= cos(¢) cos(a) + sin(d) sin(a) sin(¢) (A.12)

Equating Eqs (A.11) and (A.12) and simplifying gives

sin(¢) = °———°sc(gi(§;'m (A.13)

Substituting Eq (A.4) into Eq (A.13) gives

. tan(¢)
sin(¢) = tan(a) (A.14)

Again taking the law of cosines
cos(11/2 - ¢ )= cos(I) cos(/2) + sin(I) sin(rr/2) cos(6 - Q) or

sin(¢) = sin(I) cos(6 - Q) (A.15)

To summarize, the three transformation refationships between

planetocentric angles (¢, ¢ and 6) and classical orbital elements (a, Q and I)

are:

sin(¢) = sin{a) sin(I) (A.4)

cos(I) = cos(¢) cos(¢) (A7)

sin(¢) = sin(I) cos(6 - Q) (A.15)
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Appendix B:
Matl ica™ Cod G te 7 Fi (S  Ord
Asymptotic Expansijons

This appendix lists the Mathematics™ code used to generate the zero,

first and second order outer and inner expansions to the five equations of

motion

Program Structure

The Mathematica™ program is structured to input a matrix whose
first column is composed of the number of ODEs, followed by the ODEs
themselves. The program substitutes the small perturbation expansions for
the dependent variables, Eq (4.6) and also for trigonometric and algebraic
functions of the dependent variables. For the outer expansions, the program
multiplies out all of the terms composed of sums of constant coefficients and
powers of . The program then combines the coefficients of eo. el and e2 .
The € terms are the zero order outer expansion ODEs, ¢! terms are the first
order outer expansion ODEs and e terms are the second order outer
expansion ODEs. To perform the inner expansions, the independent
variable h is changed to the magnified variable £ by the stretching
transformation h = £¢ . The program then multiplies and collects terms as

in the outer expansions just completed. The e terms are the zero order
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inner expansion ODEs, ¢! terms are the first order inner expansion ODEs
and ez terms are the second order inner expansion ODEs.

The core of the program is the sequence which muitiplies out the
small perturbation expansions of the dependent and independent variables
and collects coefficients of powers of e. These steps are executed by the
Mathematica™ functions Expandl] and Coefficient{]. Expand[] writes the
products of polynomials, in powers of ¢, as a simple sum of terms of
constants coefficients and powers of € with all products expanded out.
Coefficient(] collects coefficients of a prescribed power of € from the the

above sum of terms (Wolfram, 1988:381-384).

p Listi

12320 2 22 2323222222322 22t 2223223323333 2222333333323 223223222232 02% 2

Expansions : : usage = "This Mathematica function gives the zero, first
and second outer and inner asymptotic expansions for a set of first
order differential equations of motion (EOM). The EOM are
inputted via a matrix called ‘ode’. odell1,1]] is the number of EOM
being expanded. odel(2,1]], ode([3.1]), etc are the actual EOM. The
expansion parameter must be called ‘e’ for the program to work."

Expansionslode_] : =

(* Defining small perturbation expansions needed for outer and inner
expansions *)

(* Defining the small perturbation expansions for the dependent
variables in terms of the small parameter, e *)

u -u0 +ul'e +u2%e?;
q =q0 +ql’e +q2%e2;
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i =i0 +il*e +i2%'2;
0 =00 +o0l*e +02%2;
a =a0 +al*e +a2%e2,;
g =g0 +gl*e +g2%"2;

(* Defining the small perturbation expansion for trigonometric
functions *)

Sinix0_+ x1_*e_+ x2_%e_"2] = Sin[x0] + x1*Cos[x0]*e + ((x2*Cos[x0]) -
(x1°2*sin(x0)/2))*e"2 ;

Coslx0_+x1_*e_+x2_*e_"2] = Cos[x0] - x1*Sin[x0]*e - ((x2°*Sin[x0]) +
(x1°2*cos(x0)/2))%e’2 ;

Tanix0_+ x1_*e_+ x2_*e_"2] = Tan[x0] + (x1/Cos[x0]'2)*e +
((x2/Coslx0]°2) + (x1°2*sin(x0)/cos(x0) 3))%e"2 ;

(* Defining the small perturbation expansion for the reciprocal of
trigonometric functions *)

Sin[x0_+x1_*e_+x2_*e_"2]-1 = (1/Sinlx0}) -
(x**Cos[x0]/Sinlx0])"2)*e + ((x1°2*(1 + Cos[x0] 2)/2*Sin{x0} 3) -
(x2*Coslx0)/Sin[x0]°2))*e"2 ;

Cos[x0_+x1_*e_+x2_*e_"2I'-1 = (1/Cos[x0]) +
(x1*Sin[x0)/Coslx0])"2)*e + ((x1°2*(1 + Sin[x0])°2)/2*Cos[x0] 3) +
(x2*Sin[x0)/Coslx0]'2))%e"2 ;

Tan(x0_+x1_%e_+x2_%e_"2}"-1 = (1/Tan{x0]) - (x1/Sin{x0] 2)%e +
((x1°2*Coslx0]'2/Sin[x0]'3) - (x2/Sin{x0]'2))%e"2 ;

(* Defining the small perturbation expansion for algebraic functions *)
(x0_+xl_*e_+x2_*e_"2)-1=(1/x0) - (x1/x0°2)*e + ((x1°2/x0°3) -
(x2/20°2))*e’2 ;

(* Defining the exponential of a large negative number is zero, or
allowing the expansion to neglect exponentially small terms *)

(E'(h/e))-1=0;
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(* Performing the outer expansions of the EOM *)

(* Multiplying out all the terms in the EOM *)
Dolodelli, 2]] = Expandlodelli, 1]]},{i,2,(1 + odell1, 1])))] ;

{=.

(* Grouping the coefficients of e raised to the 0,1 and 2 powers. The
zero order outer expansions are located in odel[2, 3]]-odel(6, 3],
the first order outer expansions are located in odef(2,4]]-odell6,

4]], and the second order outer expansions are located in odel[2,
5]1-odell6,5]]. *)

Dolodelli, 311 = Coefficient{odelli,2]],e,0],(i,2.(1 + odef(1 . 11})}]
i=.;
Dolodel[i, 4]] = Coefficient[odelli, 2]l.e,1],(i,2,(1 + odell1 . 1]]))]
i=.;
Dolodelli, 5]] = Coefficient[odelli, 2]],e,2],(i,2,(1 + odellt, 111}

i=
A

(* Performing the inner expansions of the EOM, which transforms h
to z by the definition h = z*e)

(* Multiplying out all the terms in the EOM *)
Dolodelli, 2]] = e*odelli, 1]],(i,2,(1 + odell1, 1))} ;

.
.

| =
L]

(* Implementing the definition refating h and the stretching variable z
*)
h=2%;

(* Multiplying out all the terms in the EOM *)
Dolodelli, 2]l = Expandlodelli, 2]]l.(i.2.(1 + odel(1, 11} ;

1=,
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(* Grouping the coefficients of e raised to the 0,1 and 2 powers. The
zero order inner expansions are located in odel{2,6]]-ode[[6,6]],
the first order inner expansions are located in ode{[2, 6]]-odell6,
6], and the second order inner expansions are located in odel(2,
6lj-ode([6,6]]. *)

Dolodelli, 6]] = Coefficientlodelli,2]].e.0],(i.2,(1 + odell1,11))]
i=.:
Dolodelli, 711 = Coefficientlodelli, 2]],e.1],(i,2.(1 + odell1, 1]I)}]
1=
Dolodelli, 8]] = Coefficientlodelli, 2]l.e,2],(i,2.(1 + odell1, 11)}]
i=.;

12222222 222202 22 s R 2223222222222 2023322222322 228222

Sample Input

The following listing is @ sample input required to execute the above
program. It is same the five ODEs derived in Section IV and describe the

flight trajectory of a lifting body entering a planetary atmosphere.

odelft,1]]1 =5

odell2, 1]l = u/(1 + h) - (2*6*u*(1 + [*Tanlgl))/(E"(h/e)*e*Sin(g])

odell3, 1] = -((b*1)/(E*(h/e)*e)-(q*(1 - @°2/u))/(1 + h)

odell4, 1]l = 1/((1 + h)*Tanig)) - (b*d*Sinlal)/(E'(h/e)*e*Coslgl*Sin[g]* Tanlil)
odellS, 1] = (b*d*Sinlal)/(E'(h/e)*e*Coslgl*Sinlg]*Sinli])

odell6,11]) = (b*d*Cosla})/(E*(h/e)*e*Cos[g]*Sinlg])
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Appendix C:
Derivati (F Ly Used Taylor Seri { Bi ial
Expansions

This appendix derives many Taylor series and binomial expansions

frequently used in this study.

Small Perturbation Expansions for Tri i Functi

To expand the sine, cosine and tangent functions of small
perturbations (powers of ¢) into linear combinations of powers of the
perturbations, the small angle formulas for the above functions are needed.
The small perturbation here is ¢, where € « |

Since cos (x) is defined as

cos(x) = >, (-l—)nmz—n
n=0 (2"”
(ae) - 1 - 2P @0
cos(ae) = T T
2

-1+ ;—,& oe}) (C.1)

Since sin(x) is defined as

sin(x) = 2, CP @™’
0=0 (20*‘”‘
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(@) (ae)®
3t o5

3

sin(ae) = ae -
= ae + Ole (C.2)

Since tan(x) is defined as (Beyer, 1984:297) and (Gradshteyn and
Ryzhik, 1980:34-35), where B,, is the n'? Bernoulli number

® L% (52 2%-1 5
l&ﬂ(!)'Zz (2 l)|B2t‘X .x+ﬁ+2x_+.,.

y (2n+1)! 31 15!
(ae) (ac) 2(ae)®
tan(ae) = ae + 5y~ + =5y
- ae+ O(e3) (C.3)

To derive the small perturbation expansions, angle-sum relations are

also needed.
cos(a + b) = cos(a) cos(b) - sin(a) sin(b) (C4)
sin(a + b) = sin(a) cos(b) + cos(a) sin(b) (C.5)
tan(a) tan(b)
tan(a + b) = T21(a) tan(b) (C6)

In deriving the small perturbation expansions for sin(a + be + ce +de3 )
and cos(a + be + ce® + ded), Eqgs (C.4) and (C.5) are repeatedly used. The
following example illustrates this by deriving the expansion for
sin(a + be + ce + de).

sin(a + be + ce? + ded)

- sin(a) cos(be + ce? + de) + cos(a) sin(be + ce? + de’)
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- sin(a) {[cos(be)cos(ce? + ded) - sin(be)sin(ce? + de3)|

)

+ cos(a) [sin(be) cos(ce? + de3) + cos(be) sin(ce® + déed)]

= sin(a) {cos (be)lcos(ce?) cos(ded) - sin(ce?) sin(ded)]
- sin(be) [sin(ce?) cos(de’) + cos(ce?) sin(de3)|}
+ cos(a) {sin(be) [cos(ce?) cos(ded) - sin(ce?) sin(de3)]

+ cos (be)lsin(ce?) cos(de?) + cos(ce?) sin(de3)]}

Substituting in Eqs (C.1) and (C.2)

sin(a + be + ce? + ded) = sin(a) + bcos(a)e

2.
+ (ccos(a) - b_snzn(;a_)]ez + O(d) (C.D

Similarly, cos(a + be + ce? + de?) becomes

cos(a + be + ce? + de3) = cos(a) - bsin(a)e

2
i (csin(a) ' "—9‘5’5@)3 . O(d) (C38)

To derive the expressions for the reciprocals of the above

relationships, binomial coefficients and Pochhammer symbols are used
(Andrews, 1985:10-11, 273). By definition, where (-n), - 1 and
(-n)g = (-n) (-n+1)..(-n+ Kk - 1)

(a+ o) - Z (:)aﬂ'* bt - Z (;mk'ﬂaﬂ" bt
k=0

k=0 (C.9)

As an example to find the reciprocal of a binomial series
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1 - (‘l)a““ (be +ce+ de3)'
a+be+ce2+de3 Z k

- z (1 (n)e a1 (be + ce? + e

( l)k (be tce®+ de3)k
all+k)

Eb48

2
-%u[:—:.,-fz‘] ez+0(e3) (C.10)

Substituting Eqs (C.7) and (C.8) into (C.10) gives

(sin(a + be + ce? + ded))!

1 _bcos(a)e* b2(1 + cos¥(a)) ccos(a)
sin(a) ~ sin¥(a) 2sin3(a) sin®(a)

)2+mé)m4n

(cos(a + be + ce? + de3))!

1  bsin(a) [bz(l + sin%(a)) csm(a)

R 3
cosla) "cos?(a) | 2cos’(a)  cosla )] +ole) (C12)

To derive the small perturbation expansion for tan(a + be + cel s dea).
Eq (C.6) can be used repeatedly, with the assumption tan(a) tan(be + ce? +
d) ~ 0 (alternatively, tan(a) < 1/tan(be + ce? + ded)). This assumption
worsens as a-1/2 radians or as € increases. Due to this approximation,

Karasopoulos limited his study to I < 75° (Karasopoulos, 1988:6) To avoid
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this approximation, Eq (C.7) is divided by Eq (C.12), since tan(x) =
sin(x)/cos(x).

3. sin(a + be + ce + de3)

cos(a + be + ce + de3 )

tan(a + be + ce? + de

2.
- [sin(a) + becos(a)e+ (ccos(a) - bs'Tn(a))ez]

. 2 . 2
1 bsin(a) (b (1 + sin¥(a)) csin(a) ] 3
X[COS(a) " cost(a) © ( 2cos%(a) cosz(a)] ot

Simplifying and grouping terms of powers of ¢ gives

tan(a + be + ce? + de3)

b"'sin(a)+ c
cos (a) cosa(a) cos?(a)

= tan(a) + ] . O(e?') (C.13)

To derive the reciprocal of the above expression, Eq (C.8) is divided
by Eq (C.11), since 1/tan(x) = cos(x)/sin(x).

cos(a + be + cel + dez)
sin(a + be + ce + ded)

(tan(a + be + ce? + ded)) ! -

2
- [cos(a) - beos(a)e- (csin(a) + P_%m]ez]

x[ 1 +°°°5(a’e+ b%(1 + cosi(a)) ccos(a)] J o)
sin(a) " sin(a) 2sin¥a)  sin%(a))

Simplifying and grouping terms of powers of € gives

(tan(a + be + ce + ded))’!
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1 b . [bzcos(a) _C

= - 2+ 3
tanla) ~ sinf(a) " | sin%(a) sinz(a))e o) .14

Small Perturbation Expansions for Alzebraic Functi

This section derives many of the frequently used binomial expansions
used in the derivations in this study. Again binomial coefficients and

Pochhammer symbols are used and are defined in Eq (C.9).

z ( ) an-k (be+ce + de:’)k

(a+ be + ce +de3)" k=0

o0
- z 1 (n a8 [be + ce? + g
{0 k!
o0
Z (—(!n)t—k(?)l(be +ce?+ de3)t
ko 3K (C.15)

For example, as shown above in Eq (C.10), for n = 1

1 (1) (be + ce? + de3)?
(a+ be+ ce? + ded)! (on) al
(1) (be + cé? + gy’ ) (be + ce? + aé)ﬁ o)
(1) a® (21 a°
L bercfeded 2Abesces de) o
a a 2a3
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b

2
1 - c)2 3
"a aze*[a:;‘az]e + O(€7) (C.16)

As another example, as shown above in Eq (C.16), for n = 12

1 (1), (be + ce? + de3)0
(a + be + cet + de3) ™ (0!);
1 2. .31 (1 2. .32
> (be + ce + de”) > (be + ce® + de”)
! 2 o(é
) 3 ’ 5 +Ole)
(11) a2 (21) a2
) Ll _be+ ce2§+ dél R 3(be + ce2§+ ded)? . O(e})
a? 2a? 8a?

> 3] &+ o(ed) (C.17)
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Appendix D:

Derivation of Solutions for Outer E ions of the Equa]
of Motion

Methods of Solution

The solutions to the two sets of five, coupled, first order, linear
nonhomogeneous ordinary differential equations (ODEs) found in this
appendix are derived below. Three methods are used to solve these
equations. The first method used is the Method of Separation of Variables,

where the ODE and its solution are given as (Beyer, 1984:315)

- [ty [rwar-c (D.1)

C is the constant of integration.
The second method used to solve ODEs found in this study is the
Method of Integrating Factors, where the ODE has the form

d
Ef + P(x)y = Q(x) (D.2)

The integrating factor has the form

v-e [P ds (D.3)
and the solution is given as (Beyer, 1984:315)

ye PO ax. [ormye PO, ¢ o
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)
.. Jo(x) e Jporex, ¢

(D4
e IP(x) dx

The third and final method is a variation of the second method and is

known as Bernoulli's Equation (Beyer, 1984:315). The ODE is given as

% + P(x)y = Q(x)y" (D.5)

Again the integrating factor has the form

1>-eIP(x)dx (D.6)

and the solution is given, for n = 1, as (Beyer, 1984:315)

y!IMe (l-n)IP(x) . (1- n)fQ(x) e “'")Ip("’ 9, C or

(1 - o e MmPe ax, )1
y - (D.7)
¢ (10 [P(x) dx

Although some of the ODEs are coupled, the coupling is avoided by
solving by ODEs in a judicious order. The du/dh ODE is solved first,
followed by the dq/dh ODE is second and finally the da/dh ODE is solved.
The dI/dh and dQ/dh ODEs are independent of the other ODEs and are

solved in the order presented for consistency.

- ('l ion Notati
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As shown in Section [V, there are ten ODEs expanded from the
equations of motion. Accompanying the solution of each of these ODEs is a
constant of integration. To simplify the bookkeeping involved in defining
all these constants, the following notation is used for the outer expansion
solutions:

The constant of integration is given as C;,, where i denotes the order

(¢' -- & or €!) of the solution and j denotes the variable associated with this
constant.

i variable

1 u

2 q

3 I

4 Q

5 «

Thus C,, is the constant of integration for the variable uy and C, 4 is

the constant integration for the variable Q,.

The differential equations corresponding to the el equation of motion

terms were derived in Section 1V and are repeated below:

du u
= _ __-0_
dQQ 0 qu (
h - l . h 0 = l D-g)
dl
220
ah " 0 (D.10)
dy
T 0 (D.11)
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doy 1
dh T (1 +h)tan(y,) (D.12)

duy/dh Equation Solution. The Method of Separation of Variables

solves Eq (D.8). Rearranging Eq (D.8) into form of Eq (D.1) gives

du, Uy du, dh du, dh .
dh *T+n ™ u, T Ten "’juo d“*fhndh'cm

Solving the above ODE gives
- Lo
ln(uo) +In(1+h)=Cy; or uy-=- 1+ h

C
Solution: u, = _I—?JE (D.13)

dg,/dh_Equation Solution. This ODE is solved by substituting the
solution of uy, Eq (D.13), into Eq (D.9). Thus, the ODE now becomes

The ODE now has the form of Bernouili's equation Eq (D.5), where

1 1
P(x)-“h Q(x)-cm n«3
From Eq (D.6)
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{
u-e.[P"‘) d"-efmdh =In(1 +h)

Thus, Eq (D.7) gives

2 . . | - .
a, % 21n(1 h)-(-Z)f(-fo—e 2in(l « hygp - Cg, OF
|

| -2 1
- -C
(go1 + 1))? ConJ(l AL

Integrating the right hand side of the above equation gives

] 2
(go(1 + m)%~ Coy(1+h)

- Coz

Solving for g, gives the desired solution.

Solution: q, = > l
=1+ h) - Cpy(1+h)°
\/Cm 02

) Co\Cop
1 - [CorCogl1 + 1) - 1]

(D.14)

dly/dh Equation Solution. The solution to this ODE (Eq (D.10)) is

trivial.

Solution: I = Cy3 (D.15)

dQ,/dh Equation Solution. The solution to this ODE (Eq (D.11)) is

trivial.

Soltution: g = Cy4 (D.16)
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doy/dh Equation Solution. This ODE is solved by first rewriting the

term tan(y,) in Eq (D.12) in terms of qo, Where, by definition, go = cos(vy,).

1 1 l 1 1

tan(y,)  sin(yo) '\/l -cosz(yo) q/l ] qo2 f_lz_ |
do

cos(yg) coslyg) %

But from Eq (D.14)

1

2 2
—5=={1+h)-Cy,(1+h)
qoz Cm 02

Substituting the above two relations into the ODE, Eq (D.12) gives

dog 1 !

dh “(1+h) [3 5
-CE(I"'h)'Coz(l*h) -1

The Method of Separation of Variables is used to solve this ODE.

From Eq (D.1), the solution has the form

1 1
| —— +C
Jdo- | o0 T _ 7 n e Cos
1) Cogll +mf -1

The above integral has the following form and solution (Beyer,
1984:257),.wherex = 1 + h,dx - dh,a - -1, b - 2/Cj; and ¢ = -C,.

1 1 . -1 _bx+2a
dx - Sin +C
J x:}a + bx + cxz J-a (le sz-4ac]

From the definition of h (Eq (3.22)), h 2 0, therefore |1 + hi =1 + h.
Using this relation and substituting the above relation into the ODE gives

the sofution
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Solution: o = Sin’!

+C (D.17)
\/1 - Conzco ”
Outer Expansion ¢! Terms

The differential equations corresponding to the el equation of motion

terms were derived in Section IV and are repeated below:

dul . . ul (D 18)
dh © “Teh |
d 2 2y :
9 _ 9 (2%% %Y%|, 9 (%" (D.19)
dl
=1
- 0 (D.20)
dQ
=1
o, (D:21)
da' Y|
o D.22)

dh (1 +h) Siﬂz('yo) (

du,/dh Equation Solution. The Method of Separation of Variables
solves Eq (D.18).
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C
Solution: u, = I—PE (D.23)

dq,/dh Equation Solution. Rearranging Eq (D.19) gives the ODE a

form solved by using an integration factor.

2 3
dag 9 [ 340 %Y
dh " 1+h ™ u02(1+h)

Substituting known relationships for ugy (Eq (D.13)), g4 (Eq (D.14))
and u; (Eq (D.23)) gives

g(ll.+_q|_ | - 3 - Cll
dh l+h 2 'Co,C02(l "‘h) 3

co,z(%’ﬂ +h) - Cop(1 + h)z)i

The ODE now has the form where an integrating factor is used to
solve the ODE. From Eq(D.3)

1 3
+h 7 (1+h) (2-CyyCopll + 1))

Cll

Q(h) = - ; 3
co,z(qu +h) - Cyyll + h)2]2

From Eq (D.3)

D_ejp(h)dh_eﬂ : 3 )dh

L+h” (14h) (2~ CoiCoz(1 + b))

w

(2 - CoyCogl1 + M)?
Vi+h
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Thus, Q(hju = Q(h) e Ip"‘) dh oives

c ((2 - Co1Coal1 + 1))?
Q(h)e.[p(h’dh-- - Vieh .

2 2
Co 2{==(1+ h) - Cpy(1 + h) )Z
01 (Con 02

(17%

L I
\}C(“(l + h)z

Integrating the above equation gives

P(h)dh g4p . —_Cl1
fQ(h)eI dh \/C_o‘(l . h)

Thus, Eq (D.4) gives

C
TR ey
[\}cm(uh) 12 h}

(2- CoiCoal1 + 1))

Solution: q, - (D.24)

[ S J[O%]

dl,/dh Equation Solution. The solution to this ODE, Eq (D.20), is

trivial.

dQ,/dh Equation Solution. The solution to this ODE, Eq (D.21), is

trivial.
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da,/dh Equation Solution. This ODE is solved by first rewriting the

term vy, in Eq (D.22) in terms of q;. From the assumed expansions for the

outer variables (Eq (4.6)) and using the definition of q = cos(y)

q=qy+q+ O(ez) = cos('y) = cos(yy + vy, + O(ez))

The small perturbation expansion for the cosine function, Eq (C.8), gives

cos(yy + vy + O(¢?)) - cos(y,) - v,sin(yg) € + O(e?)
Equating the above two expressions gives
g = cos(yg) (D.27)
q,
Yy = - sin('y,) (D.28)

Therefore, Eq (D.22) becomes

doy 9
dh (1 + h) sin¥(y,)

Next, the sin3(yo) term in the above equation is expressed in terms of q,,
where, by definition, g4 = cos(y,).
1 1 1

) = 3° 3
sin“(y,) 2 2
T cosz(yo))2 (1- qoz)z

But from Eq (D.14)

2 1
-3 2
E;;(l +h) - Cyo(1 + h)

Qo
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After combining the above two equations and simplifying, the
expression for 1/sin( Yo) becomes

3
1 2(1+h) - CpCopll + 02 V3
sin¥(yg) |- Cy + 201+ h) - CyCopsl1 + N2

Substituting this relation into the ODE, Eq (D.22) gives

3
do;  q 2(1+h) - CCop(1 +h? Y5
dh " (1+h) (- Cyp+ 21 + h) - Cy Cyyl1 + h)?

But from Eq (D.24), q, is known. Therefore, after substitution, the

above ODE becomes

C
3 (=le=.c VI+h
doy 1 [ 2(1+h) - Co Cogll+h)? Y5 [\[Coy(1sh) 12
dh " (I+h){-Cy, + 2(1+h) - Cp Cop 1+h )

NI

(2 - CoyCoal1+h))

After simplifying, the ODE finally becomes

C
7&:, Cy5(1 +h)
dal C01

dh 3
(-Coy » 2(1sh) - o Copl1+h)2 )2

The Method of Separation of Variables is used to solve this ODE.
From Eq (D.1), the solution has the form
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dh

™~

fda,-a,.c,s,\—?lc_:J'(

“Cop + 2(1 + h) - Gy Coo(1 + h)z)

(1+h) dn
+Ch2 3
(-Cop + 201+ h) - Cg,Col1 + )2 )2

The first integral has the following form and solution (Beyer,
1984:255), where x = 1 + h, dx = dh,a = -C,,, b = 2 and ¢ =~ -C;,,Cy,.

dx ) 2(2cx + b) or
( 3 (4ac - bz)\fa + bx + cx?

a+bx+ cxz)z

dh
3

CoiCog (1 +h) + 1
(l - Cor?Coz) \-Coy *+ 201 + h) - Co,Cogl1 + )2

The second integral has the following form and solution (Beyer,
1984:256).wherex = 1 + h, dx = dh, a = -C4,, b = 2 and ¢ = -C;;Cy,.

J X dx 2(bx + 2a)

% (4ac - bz)‘\]a s bx + cx’

(a +bx + cxz)
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(1+h)dn
3
J’ ('Cm + 21+ h) - C Coyl1 + h)? )2

(l + h) - COI

Substituting the above two integrations into the previous expression
for a, gives

C“ ‘ A -COlC (l"‘h)"’l

Gl"

. Cip((1 + 1) - Cyy) g
(l - Colzcoz) ,\/'COl + 2(] + h) - CO]Coz(l . h)z 18

Simplifying the above equation gives

C
(Clz +C11Co2VCoy )“’h) - L#I'C + COlClz]
. o1
Solution: a; =

!
(1 - Coy2Coz JN-Coy *2(1+h)-Co Copl 1 +h1?

+ Cls(ng)
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Appendix E:
Derivati { Solutions for | E : fthe E ,
of Motion

Methods of Solution

The solutions to the two sets of five, coupled, first order, linear
nonhomogeneous ordinary differential equations (ODEs) found in this
appendix are derived below. Five methods are used to solve these
equations. The first method used is the Method of Separation of Variables,

where the ODE and its solution are given as (Beyer, 1984:315)

-l [t ey [ a-x (E.1)

K is the constant of integration.

The second method used to solve ODEs found in this appendix is the
Method of Integrating Factors, where the ODE has the form

&L\ Py - Q) (E2)

The integrating factor has the form

vae [P (E3)

and the solution is given as (Beyer, 1984:315)

ye P [y e [Poa, ¢ o
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_ [ouye Jpi e
eIP(x)dx

(E4)

The third method is a variation of the second method and is known as

Bernoulli's Equation (Beyer, 1984:315). The ODE is given as
d ‘
5¥ + P(x)y = Q(x)y" (E.5)

Again the integrating factor has the form

vee P (ES)

and the solution is given, for n = 1, as (Beyer, 1984:315)

y(l-n)e (l-n)IP(x) dx _ (1- n)fQ(x) e (l'n)IP(x) dx, K or

1

(1- n)fQ(x) e “'")IP(") dx, g b-n
y = (E.7)
e (l'n)IP(x) dx

The fourth method occurs when the ODE does not have an
elementary function as its solution. To derive a solution to the ODE,
judicious approximations are made, using binomial and Taylor expansions
and assumptions based on the physics of atmospheric entry and on
experience.

The fifth and final method to solve the foilowing ODEs recognizes
that some of the ODEs are coupled and cannot be solved independently.
Thus, an intermediate solution is found to two (or more) ODEs and by using

this intermediate solution, the original ODEs are solved (Karasopoulos,
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1988:177). For example, suppose there are two ODEs coupled and cannot
be solved independently, dy/dx = f(x,y,z) and dz/dx = f(x,y,z). If the two
ODE:s are combined by a mathematical operation, like addition or division,
the independent variable, x, may possibly disappear, resulting in an ODE,
dz/dy = f(y,z), which is solvable. Assuming there is a solution to the above
ODE in the form z = F1(y,z) or y = F2(y,z), the two original ODEs are

expressed as functions of only two variables and thus are solvable.

Constants of Integration Notation

As shown in Section IV, there are ten ODEs expanded from the
equations of motion. Accompanying the solution of each of these ODEs is a

constant of integration. To simplify the bookkeeping involved in defining

solutions:

The constant of integration is given as K, where i denotes the order

tel -- Y or €!) of the solution and j denotes the variable associated with this

constant.

|

N bW -
O B I = I

a
Thus K, is the constant of integration for the variable uy and K4 is

the constant integration for the variable ;. In addition, the coupling
present in the first order inner ODEs generates lengthy constant terms in

their solutions. The following shorthand notation is used to describe these
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terms. K;; are the constants multiplying the terms in the integral solution.
As before, 'K’ signifies an inner expansion solution, ‘1’ signifies a first order

solution, 'j' signifies the variable being solved and 'k’ signifies the kth
constant being defined in this solution. K4, is the first multiplicative

constant for the solution of variable Q. This shorthand will only be used

for the first order inner solutions.

The differential equations corresponding to the el equation of motion

terms were derived in Section IV and are repeated below:

duy  -2Buge”*(1 + Atan(y,))

- e (E9)
ae - "hPe :
dI Bbe™* cos(a,)

=0

d€ T~ sin(yg) cos(y,) (E.10)
dQy Bbe ¢ sin(og) .
dé " sin(Iy) sin(yg) cos(y,) (E.11)
dog B&e™ sin(ag) c
d¢ " T tan(ly) sin(yg) cos(y,) (E.12)

dq,/d€ Equation Sofution. The Method of Separation of Variables
solves Eq (E.9). Rearranging Eq (E.9) into form of Eq (E.1) gives '

dq - - -
-;é"--?\Be ¢ =» dgg=-ABetdE -» jdqo--fme $dE+ Ky,
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Solving the above ODE gives

Solution: qq = ABe™ + Kq, (E.13)

du,/d¢ Equation Solution. This ODE is solved by first rewriting the
terms sin('y,) and cos(y,) in Eq (E.8) in terms of q,, where q, = cos(y,).

Thus, cos(y,) = qo and sin(y,) = \/ ! -cosz(yo) - \/ 1 -qoz. Substituting these

into the ODE gives

du - 1 A - | A
-0 3 e, =~
= -2Buge [ . + ) = -2Byge +
dé sin(yg)  cos(yg) N 1 _qOZ dy

As derived in Eq (E.13), q5 = q4(%). To simplify the above integration,
the independent variable is changed from € to q,. Since gy = A Be ™t + Koz
dgy= -A Be™? d€. Thus, the ODE now becomes

dug 20 1 A
dqo ?\ l_qoz qo

Now, the Method of Separation of Variables is used to solve the above

equation. Rearranging the above equation into form of Eq (E.1) gives

%ﬁ(n L) d_ugg[n A

- + -> - d
dg, A :Zl-qoz q Uy A :Zl_qz qo) Qo
du
-0 _
J J [ g qo]dqo Koy

Solving the above integral (Beyer, 1984:252) and remembering, by
definition, (Eq (D.27)) q¢ = cos(y,) or y, - Cos'l(qo)
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In(uy) - - % Cos™'(ag) + 21n(gq) + Ky

2 -
In(uo) - -—%Q + ln(qoz) + Koy

Rearranging the above equation gives the final solution, where
e"P(Km) = Koy

2
Solution: ug = Ky, qoz exo[-x Cos"(qo)}

2
= Koy (ABe7 + Ky, )2 exp[- 2 Cos!(ABe™t Koz)] (E.14)

dl,/d¢_Equation Solution. The last three ODEs are coupled and are

solved as such. First, the Iy and oy ODEs are combined to express I, as a

function of oy. Using the chain rule for differentiation

dly dlp dg
doy d& da,

Substituting for the two known ODEs (Egs (E.10) and (E.12)) on the
right hand side

dl,  Bbe " cos(ay) tan(ly) sin(y,) cos(yy)  tan(ly)
dag ~  sin(yg) cosly,) Bée™¢ sin(ag) " tan(ay)

Separation of variables solves the above equation. Rearranging the
above equation into form of Eq (E.1) gives I, as a function of ay (Beyer,

1984:260).
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dog ~ tan(ay) 7 tan(ly) " tan(oy)

dl dog ‘
i J tan((lyo)* J tan(ag) In(sinKgs))
-» In(sin(ly)) + In(sin(ay)) = In(sin(Kyy))

=» sin(ly) sin(ay) = sin(Ky3) or

in(Kys) in(Kg,)
Io-sm“{is%—(;%ﬂ and ao-sm“[%(—l‘g—] (E.15)

Next, the ¢, and o, ODEs are combined. Using the chain rule for

differentiation

dag dog dE
dQ, ~ dE dQ,

Substituting for the two known ODEs (Eqs (E.11) and (E.12)) on the
right hand side

dog Boe ™ sin(ay) sin(lg)sin(yy,) cosly,)
dQy ~ " tan(ly) sinlyo) coslyg)  Bse? sin(ay)

- - COS( Io)

But from Eq (E.15), I, is known. Using this and the trigonometric
identity cos(Sin"(x)) -V -2 (Beyer, 1984:141), the above expression is

transformed as follows.

) __y(sin(Kgz)
a—%i— = - cos(ly) = - 005[5'" l( sin(ay) )]
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sin(Kg3) 2]%
=t (sin(aﬂ))

{sinz(ao) - sinz(l(o;‘,)J'A
i sin®(cq)

Separation of variables solves the above equation. Rearranging the

above equation into form of Eq (E.1) gives

doy [sinz(og) - sinz(l(m_)]'/2 d sin(ag) dag
= - . .) - -
A sin‘(ag) \/sinz(ao) - 5in%(Ky3)

sin(ag) dag
=3} = - + K
& I \/ sin(ay) - sin?(Ko;) "

Using the substitutions x = cos(ag), dx = - sin(ay) dog and sinz(ao)
=1- cosz(ao) - 1 - x%, the above integral is easily solved (Beyer, 1984:252)

and gives Q as a function of o

I sin(ay) dag ¢
- * Roq

\/ sinz(ao) - sinz(l(03)

. 2dx - +Koq
;}l - x°- 5in“(Kq3)
dx
. + Koq
[ VeosA(Kgs)- x2

cos(ag)
B COS(COS( K03)) * KO‘ or
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) cos(ay)

cos(Koq - %) = cos(Kgs) (E.16)

Finally, the dl,/d¢ ODE is transformed to dly/dy, via the chain rule
for differentiation, use of Eq (E.9) and the definition qq = cos(y,)

dq, d(°°5(Yo)) in dy, dy, ABe ¢
“ae " de - Sinlye) G = gg " sinlyy)

-ABe™¢

Using this relation and Eq (E.10) gives

dly dly d¢  Bbe™coslag) sinly,) bcosloy)
dy, d& dy, sin(yy) cos(yg) ABe™¢ Acos(y,)

Substituting the relation for sin(og) in Eq (E.15) gives

in Y2
d 1-21'-;5‘031 . 2 . 2 Y2
dl, sin“(Ip) 6 [sm (Io) - sin (Ko3)]
dyo  Acoslyy) = A sin(ly) cos(y,)

S G WS U N B EE S B e

Separation of variables solves the above equation. Rearranging the

above equation into form of Eq (E.1) gives

sin(IQ) dl,

5 sec(yy) dy, = or

A 0 0 \jSinz(Io) - Sinz(K03)

& sin(l,) dI

T | seclyy) dy, = v?——éé——=+l(
A I o I sin(1,) - sinz(Ko3) o

The first integral is easily solved (Beyer, 1984:260)

) ) m Y
N Isec(yo) dy, = i\ In[tan(;+ -Eo-)]
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Using the substitutions x = cos(ly), dx = - sin(ly) dl; and sin( ly)
=] - cosZ(Io) - 1 - x%, the second integral is easily solved (Beyer, 1984:252)

and gives

sin( 10) dl
sin’(l,) - smz(Ko3)

)\ l tan 4 2 Kos

KOS

- Kos

J 1 -X - smz( K03)

COSZ( Ko 3 ) X

o1 cosligh
0s (cos(l(o3) Kos or

cos(ly) = cos(Ky;) cos(% ln[tan(g‘ + XZQ)J * Kos)

Solution: I = Cos'l{cos(KO;,) cos[: ln(tan( 4'2 )] + Kos[

6 ﬂ COS-I (?\BQ-E + Koz )\
- Cos™ cos(Kgz)cog y In| tan|

~
N

do,/dt Equation Solution. This solution is derived above and is

repeated for continuity. From Eqs (E.15) and (E.17) o4 is expressed in

terms of the independent variable,.£.

in(K
Solution: o - Sin'l(%:%ﬁﬁl)
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Siﬂ(K03)
Cos '\ ABe %+ K V2
ll - cos?(K )cosz{éln[tan[l ( 02) ])'rl( ]]
03 y 4 2 05

dQ,/d€ Equation Solution. This solution is derived above and is
repeated for continuity. From Eqs (E.16) and (E.17) Q, is expressed in

- Sin’!

(E.18)

terms of the independent variable,.£.

‘ 1 cos(&))
Solution; =K., - Cos =K (E.19)
% = Kos (cos(Ko3) 04
. 2 I3
sin“(K 3)
C -1 ! ) n gOS-I(ABe-g"’Koz)
- Cos 2 o n

1-cos“(Kq3)cos N ln[tan( 2t 2 ])"Kos

COS(Koa)
' Terms

\ The differential equations corresponding to the el equation of motion

terms were derived in Section IV and are repeated below:

du u, (1 + Atanly,))
= _ _, . -¢
g - Vo~ 2Be [ sin('y,)

uoy,cos(yo)(l + ?\tan(yoi) A Ug Yy
- +

E.20
sinz(yo) cosz(yo) sin(’y,) (E.20)
dq ap
=1 20
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dl i 1 a,sin(ag)
a, ; ) =3
gt - Boe _y'COS(%) (cosz(yo) sinz(yo)) sin(yo) COS(YO)} (E-22)
dn [y, sin(og) 1 1
BY gt | U ]
ac - Boe | sin(ly) (cosz(yo) sinz(yo))
I, sin(ay) cos(ly) a,cos(ag) (E23)
sin?(Iy) sin(y,) coslyy)  sin(lo) sinlyg) cos(y) '
da, I oot y,sin(og) 1 1
dé tan(yy) ~°°° tan(l) (cosz(yo) sinz(yo))
I; sin(og) a,cos(ag) (E.24)
sin®(ly) sin(yg) cos(y,)  tan(ly) sin(y,) cos(o) '

dq,/d€ Equation Solution. The Method of Separation of Variables
solves Eq (E.21). Substituting relations for uy (Eq (E.13)) and q, (Eq (E.14))

into Eq (E.21) and simplifying gives

2
99 o]
d¢ 10 Ug

(ABe+ Kyp )2

Ko, (ABe"ﬂ(oz )zexa[-%Cos" (ABe'{+K02 )]

exp[% Cos™! (?\Be" + Ko )]
- (Bt Ky, ) 0 -1

Rearranging the above equation into form of Eq (E.1) gives

- (ABe kg, )| -1
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2 . -
qul ) J, (ABQ-{* Koz) exo[xCOS I(ABe - KOZ)J _y|dEe K2
Koy

q; = ABe™% - Kgpf

. 1
Ko

j (ABe™+ Kq, ) exo[%Cos" (ABe¢ Ko._,)] dE+ K/,

Using the substitutions x = A Be™%+ Koz X = cos(¢) and the

trigonometric relationship c os(f;"-](&)s( 0" cot[éé—d) + cot(%g)

(Karameheti, 1966:624), the above integral is reduced to

J (?\Be-§ + Koz) QX{%COS.l (ABQ—{ + Koz )} d{
X 2 -1
- L(oz X exp[-XCos (x)] dx

J cos($) sin(d) exp(%b)
) cos(d)- cos(¢)

dé (cos(d) = Kg,)
- %J cos(¢) [cot[’é—d) . cot(%g)} exp(%b) dé

The above integral can be reduced to a sum of simpler integrals, but
one resulting integral has an integrand of cot(z) ebz. where z is the
integration variable, a function of ¢, and b is a constant. Using integration
by parts, the resulting integral has an integrand of ebz/sinzz. whose integral

cannot be expressed as a finite sum of elementary integrals (Gradshteyn




and Ryzhik, 1980:197). Thus, the approximation made to solve the above

integrals is given as

j(?\Be'{ + Koz )exp{%Cos" (ABe™¢ + Kq )] d&

- [(Z\Be’E + Ko )ex{%COS-I(Kog )] 14

Figure E1 compares the relationship between the exact function (the
integrand on the left hand side above) and the approximate function. While
there is a significant disparity at small values of £ (low orbital altitudes), the
above difference is negligible when both functions are integrated from &,
(orbital altitude at the beginning of atmospheric entry) to £ = 0. Figure E2
shows the integrals of the exact and approximate functions are identical

until £-0, where the two functions deviate slightly. This trend is reflected
in Figure E.3, which compares the exact solution of q;, obtained from

numerical integration of q, and the approximate function derived for q;.
Thus substituting the approximate function into the above solution for q,

gives an approximate solution for q,.

Solution: q; = Kyzy (Kog€ - ABe™t) + Ky, (E.25)

exp(% Cos"(Koz))
Whefe KIZI - K - l (E.ZG)
01

du,/d¢ Equation Solution. Rearranging Eq (E.20) gives the ODE a

form solved by using an integration factor.
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Figure E1. Comparison of Approximate and Exact Functions

du; (2B(1+Man(yg))e™

in Deriving the q, Solution

de ’

Sm(Yo)

Ug = “Ug *+

ZBuoy,cos(yo)(l + Man(yg))e™

sinz(yo)

2BA ug y et

) cosz(yo) sin(y,)

The ODE now has the form where an integrating factor is used to

solve the ODE.

2B(1 + Atan(y,))e™®

P(¢) -

sin(yg)
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Figure E2. Comparison of the Integrations of the Approximate
and Exact Functions in Deriving the q; Solution

2Buyy,cos(yp)( 1 + Atan(yg))e™®  2BA Uy ype

Q&) = -ug + sin?(y,) " cos?(y,) sin(y,)
From Eq (E.3)
2B(1 + Man(yg))e™
e PO dE g
v eI ¢) dt CIPJ sin(yy,) *

Factoring the trigonometric terms and noting cos(yg) = g4 and sin('y,)

= \/ ! - qoz. the above integral in separated into the sum of two

137




Normalized Solutions

0.2 4 Exact Solution
. Appoximate Solution
00 v T v T ™ T
0.0 0.2 04 06

£/€o

Figure E3. Comparison of the Approximate and Exact Integral
Solutions for q,

integrals. Substituting in the derived expression q, = ABe ¢+ Ko2

(Eq (E.13)), gives

J 2Be~* 2BAe”¢
L = exp

+ =, d¢
;}1 - (ABe 8 kyy )2 PBET* Koz

Using the substitution x = ABe™* + Ko2. the above integral is easily solved.

v = exp [% COS-I (ABe-{ + K02) -2 In(?\Be‘{ + K02 )]
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exp (% Cos’! ( ABe ™%+ Kq, ))

(ABet+ Ko, )2

2

Q()z

Thus, after factoring the trigonometric terms and using the definition
for q, as above, and substituting the expression for q; (Eq (E.25)), where by

definition (Eq (D.27)) v, = -q;/sin(yy). Q(§)v = Q) e IP(U 4 gives

(&)v =
Q&) qoz

2 -

€XPI "\ 2Buyy cosly,)( 1+Mtan(yg))e™®  2BA up ve™
-Uq +

0 sin®(y,) cos¥(y,) sinly)

gy« -22Koie™ [k ABe8 + Koy Kypi€ + Koo
- - + - e >+ +
o1 (ABe"5+K02)2 121 02 M1215* Ri2

2BKq e 8(ABe ™ + K
Rt 1 ( ¢ 023) [-Km?\Be'g'fKoszE*Kl’-’]

[1- (ABe v Koy )22

Distributing the terms in the above equation and integrating gives
(where Aj - Ag are constants)

-§
?\_Ize - d
ABe ¢+ Ko, )

IQ(E)U d¢ = K“ - Km{ + AII (
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202 -2t -¢
v Ag NBe - dE+ Ag ABe "% > dE
(?‘Be {*Koz) (?‘Be £+K02)

*

[ ABe™ (ABe‘f ' Koz)
3
[1- (et oy )2

Np2e % (}\Be'§ ' Koz)

[1- (30t key)F

ABe ™t (ABe"i ‘ Koz) 3
+ Ag 3 %

[1- (ABe?+ Ky )2

The first and second integrals above are easily solved by using the
substitution x = ABe™% + Ko,. The third integral is solved by using the

+ A4 df

following relation (integration by parts and (Beyer, 1984:278)).

ABe * ¢ & 4 J dt
(ABeteKyp)2 ~ NBe+Kg, ) ABe™+ Ko

- in(ABe 4 Kyy)

The fourth and fifth integrals are easily solved using the substitution
x = ABe ™% + Ky, and the following relation (Beyer, 1984:253,254).
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ABe™ (ABe‘i : Koz) . 2 dx « d
3 8- 3 3
[1- (ABe e+ kyy )R -2 | [1-2)
ABe ™

1= (3Bt k)2

The sixth integral is solved by using the substitution

-sin (ABe™+ Ky, )

X = ABe~% and the following relation (integration by parts and (Beyer,
1984:257)).

ABe™® (ABe‘*’» + Koz) 4
3
[1- (ABe S+ Koy )2

dg

4

\/ ABe™é + Ky )2 J\/ 1 - 2\Be +Kop )2
d& .. dx
j\/l-(ABe"5+K02)2 J" V1 - (x+Kop)?

1 ln[z/\/(l'xozz)((l'Kozz) - 2K02x - xz) - ZKozx + Z(I'Kozz)
1-Kg,2 X

Jowe Po e ¢ o

Thus, Eq (E.4) gives the solution as U - IP( )
£) dt
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Solution: u, = (?\Be'c + Ko )2 exp(- %COS-I(ABQ—{ * Koz ))

2K51Kyp + Kgp K (E+1) 2K, K
X 1Ky + or(Kiz 02 21) EASTILSY Sin"(?\Be‘§+ Koz)
ABe C"' Koz A

2 -
~ [KoiKy2 - Koy Km](ngﬁ - ABe {) 2Kgp Koy Kyg1

\J1 - (ABet e Koy )2 AV - Kog?

2\/(1'K022) [l'(?\BQ—{ + Koz)zl - ZKoz(?\Be-{ + Koz) +2
X In ABQ_{ (EZ?)

+

da,/d¢ Equation Solution. The last three ODEs are coupled and are
solved as such. First, the a; ODE is solved using judicious assumptions.
This solution is used to derive an expression for I;. Finally the solutions for
a; and I; are used to derive an expression for Q;. The expression for da,/d¢

is given as Eq (E.24).

da _e lygsinag) (1 1
—1_ - ¢ 12 -
at " 0tlvo) - Boe [ tan(ly) (cosz('yo) sinz(yo))
I, sin(ay) acos(ag)
sinz(lo) sin(y,) cos(y,) tan(lp) sin(yg) cos(yy)

Since re-entry vehicles enter a planetary atmosphere with small bank
angles (o), the value for 6, where by definition (Eq (3.33)) & - (Cy /Cp)

sin(0), is very small, or & = O(0.001). Combining this with the fact et is also
small, or el 0O(0.1), results in a simplifying assumption for the da,/dg

ODE. Assuming cot(y,) » Bse™, which is valid for Yo < 80° and typical
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values for B (B ~ O(10)) (Hillje, 1969:2), the coupling in the da;/d€ ODE is
removed. Thus, the da;/d¢ ODE becomes

da cos(y,)
-1 b A {14
dE - COt('Yo) = Sin('y‘))

This ODE is solved by first rewriting the terms sin(y,) and cos(y,) in
Eq (E.8) in terms of §, where, q = cos('y,) = ABes Koz Thus, sin(yy) =
\/ 1-cos( Yo) = \/ 1-(ABe ¢+ Koz)z. Substituting these into the above ODE

gives

ddl . )\Be-g + Koz_
d§ '\/l‘(?\Be-E + K02)2

Now, the Method of Separation of Variables is used to solve the above

equation. Rearranging the above equation into form of Eq (E.1) gives

ABe S+ K
oy =Kyg + o g
\/l‘(ABe- + Koz)

Using the substitution x = A Be™%, the above integral is reduced to

a =K dx K dx
= hs - - ho2
(1 - Kqo2) - 2KooX - X2 V(1 - Kg,2) - 2KooX - X°
02 02 02 02

The first integral is easily solved (Beyer, 1984:255) and gives

dx . -1
= Sin " (x+K
J\/(l - Kgg?) - 2K X - X2 (x+ %o2)

With some manipulation, the second integral is easily solved (Beyer,
1984:257) and gives

143




dx
JXV(I - Kozz) - ZKozx - xz

| n[Z\ﬁl-Kozz)( (1-Kg3?) - 2Kggx - 22 - 2Kogx + (1-Kyp2)
!

Substituting the above two integrals back into the original expression
for a, gives

K
Solution: a; = K,s - Sin"!(ABe™ + Ky, ) + =B

V1-Kog?
X In [2\/( 1Ko 1-(ABe Ky )] - 2Ky (ABEEoky ) + 2]
(E.28)

ABe~¢

Figure E4 compares the exact solution of ay, obtained from numerical
integration of a, and the approximate function derived for o;. While there
is @ minor disparity at small values of £ (low orbital altitudes), the above
difference is negligible when the magnitude of the disparity is compared to
the magnitude of the functions at this altitude. This difference between the

exact and approximate solutions reflect the same behavior as found in the
approximate solution for q, (Figure E.2)

dl,/df Equation Solution. The expression for dI /d€ is given as Eq
(E.22).

di - 1 1 oy sin(ag)
—1_ £ ) ) |
d& Boe [YICOS(%) (Cosz(')’o) Siﬂz(’yo) Sin(yo) COS(YO)}
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The above ODE is transformed to dI,/dYy, via the chain rule for

differentiation, use of Eq (E.9) and q = cos(y,)

dq, d(°°5(Yo)) in( )dyo dy, ABe™*
4t " dg " TSIMYol g TP 4R Tsindy,)

-ABe -

Using this relation and Eq (E.22) gives

ay dy
dy, d& dy,

.———0—52:;(;{) Boe™¢ [y,cos(ao)( l ! ) asintog) ]

cos?(yg) sinz(yo) ~ sin(yy) cos(y,)
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] §[chos(ao) sin('y,) 1 J ) a,sin(ao)]
A

cosz(yo) “sinlyp)|  cosly,)

From Eqs (E.18), (E.25) and (E.28), relations for o, q; and a, are
given, and by definition (Eq (D.28)), v, = -q;/sin(y,). Substituting these
relations into the above ODE gives

a, |8 1 1 a;sin(ag)
- _2 ) I
dys A [YICOS(GO) (Sinz(Yo) COSZ(‘YO)) COS('yo) :I

5 cos(yy)-K
"X [[Km (Koz - Koz‘“(—“iqgfu) - °°5(Yo)) * Klz]

e

. 16 Y
| | cos(Ko3) sm{x ln(t.an( . él J+Kos]
* (sinz(yo) ) cosz(yo)] ) moY i
1- [cos(Ko3) co{x ln(tan(; + _ZQ ))*Kosﬂ
sin(Koa)

cos(yy) \[ - [cos(l(oa) co{% ln(tan(; + ZZQ ))+K05ﬂ
2y l-KQLZ sin(yg) - 2Kg,c0s(yy) + ZH }

ll

= |
N

n Koz
X [K|5 *Yom 2 ' cos(yg) - Koz

>
e
XY
~
—

Before separation of variables is used to solve the above equation,
several approximations are used to bring the integration task down to a

manageable level. First, using order of magnitude analysis involving &/A,
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and Kgs, 5/A = 0(0.001) and Ky » /A . Therefore, the following

approximation is made.
sin[% ln[tan(g' + 120' ]) + Kos] =~ sin(Kys)
Therefore

cos{% ln(tan(% + ZZQ D + Kos] = cos(Kqs)

Also, through numerical analysis, the following approximations are made.

In(cos(yy) - Kgz) = - coslyg)

\/-__IEQ_—:I’(__—__"T ln(z V1 - Koz sinlyg) -2 Kop c0s(yg) « 2) =0
- Ko2

Substituting these refations into the above ODE and combining

integrands gives

:_i’t'g{[ Kzt (Koa(1+ InABY) - (1 + Kog) costyy)) + K,«_,]

v 1 _ 1 sin(Kq¢) cos(Kqa)
[Si“z(yo) cosz(yo)) Ql - Siﬂz(Kos) COSZ(K03)
sin(Kqy4)
cos(y,) :} 1- sinz(l(os) cosz(l(03)
X[ X (vo) + K "]]
cos(yy) + VY
ﬁ? o/ *Ris* Yo" >
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Rearranging the above equation into form of Eq (E.1) gives

I 'Kla*é{ Kgp sin(Kys)
A \/ l-K022 1- sinz(Kos)cosz(Km)

Javo

Sin(Kos) K|2| (Koz + l) COS(K03) COS('Yo)
; -2 2 [ in2(y,)
\/l - sin“(K¢g) cos“(Kg;3) iy

+

sin(Kos) [K122Keg Ky (1+108B)) | costKog) ¢ gy,
\1 - sin2(Kqg) cos2(Kg3) [ sin(yo)

sin(Kos) [Kyz+Koz K12y (1+410(AB)) ] cos(kyy)

) J dvg
'\/1 - Siﬂz(Kos) COSZ(K03) COSZ( Yo)
. i
l5|n(K05) KlZl COS(K03) (K02 + l) + Sln(Koa) (E - K‘SJ dyo
\/ 1- sinz(l(os) cosz(l(o3) [ cos( o)
) Sin(Koa) J' yQ dyQ
\j 1- sinz(Kos) cos?(Ky;) cos(y)

The first five integrals are easily solved (Beyer, 1984:260,261). The
sixth integral is given by (Gradshteyn and Ryzhik, 1980:189)

o0

] o dx . |Elkix2kon¢l
cos(x) ‘o (2k+n +1) (2k!)
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The term |E2k| is the Euler constant: its first few terms are given as
(Gradshteyn and Ryzhik, 1980:xxix) |E0| = 1, |E2| = | and |E4| = 5. Thus the

above integral becomes

2 4 6 4
hdYQ-Yo +YQ +5y0 + O( 8)~1L+!.L
cos(yg) 2 *8 "144 TV " 27 g

~N

Substituting vy, = Cos'l(?\Be'{ + Koz) gives the solution for I, as

K3 (K132' ( )] 2 4

[k C0s¥o)) , [_qu_o_ Yo Z‘L}

1R sin(yq) 1341/ 2 2 8
Yo I-Ko2

ettt 3]

K K _ __EI}.L_

131 §32 ?\Be—{+ K02

Solution: I = K;3+y r >
l- (}\Be + Koz)

H E Cos-l(?\Be_E’ + Koz) :|
*|K131Ky32 ¢+ K34 (2 - Kls] Inf tan| 7+ 2

Koz Cos"(ABe" . Koz) [COS“(?\BG"E * Koz )]2
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O UE E oS G G O B e =

[cos(ABe - Koz)]"”

8 (E.29)

sin(Ky¢) cos(K,a)

Where Kl3l =
\V1- sinz(Kos) cosz(K03)
K3z = Kygy (1+Kgp)

K33 = K12+ Koz Ky2¢ (1+1nAB))

in(K
K34 - . sz'"( °1)———7——— (E.30)
\/l - 5in“(Kyg) cos®(K¢y3)

Figure ES compares the relationship between the exact solution of I
derived by numerical integration, and the approximate, analytical solution
derived above. As in Figure E3, the correlation between exact and
approximate solutions is good, with a small difference appearing as £-0.
This is the same phenomena found in the approximation for q,. Thus, even
with the three approximations used to derive this solution, a significant

portion of the disparity between the exact and approximate solutions are
attributable to the approximate expression used for q;.

dQ,/df Equation Solution. The expression for dQ,/dg is given as Eq
(E.23).

dn _e |ygsinlag) 1 1 1
& . Bee-t | UL ]
ag = Boe [ sin(lo) (cosz(yo) sinz(yo))

I sin(ag) cos(ly) a,c0s(ay)
sin%(I,) sin(yg) cos(y,) ~ sin(lp) sin(y,) cosly)
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Figure ES. Comparison of the Approximate and Exact Integral

Solutions for I,

The above ODE is transformed to dQ,/dvy, via the chain rule for

differentiation, use of Eq (E.9) and g = cos(y,)

-ABe*%-

dgy d(coslyp) (3% dv ABe ™t
dt = dg "SI ge 7Y TdE Tsinly,)

Using this relation and Eq (E.23) gives

dQ

dQ; d¢

d'yO -

dg d'Yo
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5 [y sinlyg) sinlag) 1 1
A sin(ly) [cosz(yo) sinz(yo))

1 I, sin(ag) cos(ly)
* sin(1,) cos(y,) (G‘COS(%) ) sin(ly) ﬂ

From Eqs (E.18), (E.25), (E.28) and (E.29), relations for o, gy, &, and
1, are given, and by definition (Eq (D.28)), y; = -q;/sin(y,). Substituting

these relations into the above ODE gives

do, 4o de
dy, d¢ dvy,

6 [y sin(yg)sinlag) /1 1
A sin(ly) (cos (yo) smz(Yo))

1 I; sin(ag) cos(ly)
* sin(Iy) cos(yy) (G'COS(%) i sin(ly) )}

[|(‘33-K02K,2,ln(cos(yo)'Koz)'K|2l °°5(y°)l (sinz(yo) " cos?ly

sin(Ko3) Sin("oﬁ]

1y 5 2
1 —[cos(Ko3) co{’\ ln(tan( 3 30-))4(05]]

n '{z [-Kgg? sinlyg) - 2Kgycos(yg) + ]
Kis* Yo~ 2 ﬁL cos(yg) - Koz

2
cos(yo)\ﬁ-[cos(l(o;,)cos[b ln(tan( 32 ))*Kosﬂ
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sin(Ko3) 2l

) m Y ¢
1- [cos(Km) cos[x ln(tan[; + -22 ))+K05]]

5 q Cos™! (P\Be"5 Koz)
sin(Ko3) cos(Ky3) cos y Intan| 7+ > Ik Kos

13
Cos('yo)[l - [cos(l(m) cos{% ln(tan(% + ZZQ ))d(osﬂ }E

X1l -

K K - _K.L3.3_ 2
5 131 | ™132 cos(-yo) K Y Yo Yo
+ K34

ol LIERSY sin(y,)

ftnin 5 ool 2]

Before separation of variables is used to solve the above equation,

several approximations are used to bring the integration task down to a
manageable level. First, using numerical analysis involving 6/A and K,

6/\ = 0(0.001) and Kog » 6/A . Therefore, the following approximation is

made.
6 ( (1 ¥ .
sinf x Injtan| 2+ 5% || + Kog | = sin(Kos)

Therefore

co{% ln(tan(% + ZZQ )) + Kos] =~ c05(K¢s)
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Also, through numerical analysis, the following approximations are made.

In(cosly,) - Kgz) = - cos(yg)

\fl_'il_(—z ln(Z V1 - Kgp? sin(yg) -2 Koy coslyg) + 2) -0
- N2

Substituting these relations into the above ODE ,combining

integrands and rearranging the result into the form of Eq (E.1) gives (where
A, - A, are constants)

5| dyg dyg cos(yg) dyg
= K .- A A :
=K }‘[ IJ Siﬂz(yo) ' 2J cosz(yo) ‘ 3J sin(yyg)

+AJ—919—+AJ dyo + A dyo
4) coslyy) * 3] coslyg) sin(yg) "6 ] sin(y,) cos¥(y,)

2 4
Yo 4¥o Yo_ 9o Yo 9¥o
A J cos(yg) * As J cos(y,) * Ag cos(y,) * AIOI d¥e

] e

cos(yg)

The first six integrals are easily solved (Beyer, 1984:260,261,263).
The seventh through the ninth integrals are given by (Gradshteyn and
Ryzhik, 1980:189)

(o]

I "y . [EALXZKonoI
cos(x) (0 (2k+n +1) (2k!)
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The term |E2k| is the Euler constant: its first few terms are given as
(Gradshteyn and Ryzhik, 1980:xxix) |E0| =1, |E2| = | and |E4| = 5. Thus the

above integrals becomes

Yon dY()a 'Yon*l . y0n+3 . SYOWS + O n*7)
cos(y,) ~n+1 "2(n+3)"24(n+5)" Y0

The eleventh integral is transformed to put the equation in a suitable

form. By using trigonometric identities (Beyer, 1984:138)

a2 2S00
472 1-sinly,)

Using the law of logarithms

r{ m XQ] n{ cos(yy) ] “{l +sm(yQJ
| tan(4 ‘ 2) L e sin(yg) 1 - sin(yg)

Using the series expansion for the right hand side term yields (Beyer,
1984:297)

l-ln[l + sin(yo)} Z 021 (yo) - sin(yg) + S-(v0) sin (yo) O(sms(yo))
2 |1-sin(yo)] ,.; 2n-1

Therefore

e\
lr{tan(ﬂ . --“:]dyo 3
J 4" 2)[% I(‘a“wo) sin (yg)]

cos(y,) 3cos(y,)

4In(008(y0)) cosz(yo)
3 6

-

155




Solving the above integrals and substituting Yo = Cos'l(?\Be'é + Koz)

gives the solution for I, as

K K _.l_(_l}}_
, ¢ é 141 ( 132 7 COS(YO)J K K “[ _11 '_Y_QJ
Sy =Ryg A sin(yo) + Mcos(yo) +Kiq3 tan(4 *3 J

+ (Km Kig2* Kiqq (—Tzl - Kls)) [4 ln(cgs(yo)) ) cosz;(yo)]

oK ¥o [zfi §.z£]« [yz yf]]
\ 2 T Ras| =2, 1 | 20, YO
I'- Koz 6 = 40 2 "8

K|4|(K132'A_&%13K_J KoK
* N2 142 K33

\/1 - (?\Be" + Koy )2 “ABe Koz

1 -
+ Kl43| tan 4 +

2

Solution: 2y = K4+ x

+ (K|32 KHZ + K“‘ (g - KIS)) [4 ln(?\Be'ﬁ + K02) (}\Be'i + K02 )ZJ

-

3 6

Koz K44 COS'I(?\Be‘§ R Koz)

V1 - Kog®

+
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+

+Kyq [[C“'I(ABZ_{ ' Koz)]3 3[C°5-l("zz-< + Koo )]5}

+

Ky [[C“-I(AB‘;_{ +Koo)[ [C°5'1(ABZ-{ ' K°2)]4“ (E31)

2
K
—l34
Where K|4| = Sm(K03)

6 sin(Kyg) cos(Kys) sin(Ky3) cosz(Koal
A (l - sinz(Kos) cosz(l(m))2

1492

Ka3 = Kpaz (Ki33 - Ky32)

+

[ - sin®(Kqg) c0s2(Kq3)

sin(Kyg) cos(K03)(K,5 : %)

1 - sin®(Kqg) cos?(Ky;)

+

sin(Kgs) cos(Kg3)
44y - sinz(l(os) cosz(K03)

145 ° Sin(Kos)

Kq,K |
Kige = Kiqq - > (E.32)
l = K02
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Figure E6. Comparison of the Approximate and Exact Integral
Solutions for

Figure E6 compares the relationship between the exact solution of ,,

derived by numerical integration, and the approximate, analytical solution
derived above. As in Figure E3, the correlation between exact and
approximate solutions is good, with a small difference appearing as £-0.
This is the same phenomena found in the approximation for q;. Thus, even
with the three approximations used to derive this solution, a significant

portion of the disparity between the exact and approximate solutions are
attributable to the approximate expression used for q,.
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Appendix F:
S le Earth A heric E Trai :

This appendix presents an example Earth atmospheric trajectory to
demonstrate the use of the zero and first order composite expansions
derived in Section IV, Eqs (4.107)-(4.111). The initial conditions are for an
Apollo-type reentry vehicle and are derived from theoretical and flight test
data (Hillje, 1969:2-10)

For the following sample trajectory presented in Figures F1-F35, the
independent and dependent variables are defined in Sections II and III and
are repeated below.

y = Vehicle Altitude (m)

u - Non-dimensional Speed Ratio, u = V2 cos“’(y)/gsrs

y = Flight Path Angle (deg)

I = Inclination Angle (deg)

Q2 = Longitude of the Ascending Node (deg)

a = Latitude at Epoch (deg)
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Figure F1. Comparison of the Numerical and Analytical

Solutions for the Speed Ratio, u
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Figure F2. Comparison of the Numerical and Analytical
Solutions for the Modified Flight Path Angle, q
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Figure F3. Comparison of the Numerical and Analytical
Solutions for the Inclination Angle, |
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Figure F4. Comparison of the Numerical and Analytical
Solutions for the Longitude of the Ascending Node, Q
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Figure F5. Comparison of the Numerical and Analytical
Solutions for the Latitude of Epoch, a
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Although numerical techniques exist to obtain solutions to highly non-
linear and highly coupled systems, the trends and subtleties of the solution
are frequently lost in the volume and form of tabular and graphical data in
covering a wide range of initial conditions. By defiving an approximate,

analytical solution, relationships between dependent parameters are

!

discernable.--Also, the-derived solution is easily applied to any new set of
initial conditions-ortan be modified to incorporate aslightty different
system).This study presents an analytical investigation of the three-
dimensional equations of motion for lifting entry into a planetary
atmosphere.

In this study, the equations of motion for lifting entry into a planetary
atmosphere are derived. A non-rotating, spherical planet is assumed, as is a
non-rotating, strictly exponential atmospheric model. The derived
equations of motion are transformed to a variable set relating the classical
orbital elements to the vehicle's altitude. Solutions to the resulting five non-
linear, coupled, first order, ordinary differential equations are obtained by
using the Method of Matched Asymptotic Expansions and a computerized
symbolic manipulator, which performs the detailed algebraic computations.
By using the planetary scale height-mean equatorial radius (PSHMER)
product as a small parameter, both zero and first order expansions to the
equations of motion are obtained. ’Céu.v o .os Foy /e

P lad

It is demonstrated the analytical solution agrees with results obtained
from numerical integration of the equations of motion. Due to
approximations made in the solutions of the first order inner expansions, the
analytical solution slightly deviates from the numerical sajution at low
vehicle altitudes. The two solutions are compared further and the validity
of the analytical solution 1s examined.




